Modelos De Microondas Para Dispositivos Ambipolares De Grafeno
Perspectiva de la docencia universitaria en ingeniería
DOI:
https://doi.org/10.37467/revtechno.v11.4457Palavras-chave:
Ambipolar, Amplificador de potencia, Desfasador, Grafeno, Ingeniería, Mezclador, Multiplicador, RadiofrecuenciaResumo
En este trabajo, se implementan un conjunto de modelos que resuelven la física de los transistores basados en grafeno, capturando la conducción ambipolar y proporcionando las peculiares curvas de corriente frente a voltaje de puerta con forma de “V”. Estas herramientas pueden ser potencialmente utilizadas por estudiantes de ingeniería para explorar la electrónica ambipolar, abriendo la posibilidad de 1) rediseñar y simplificar aplicaciones de microondas convencionales; y 2) buscar nuevas funcionalidades en el ámbito analógico y de alta frecuencia. A este respecto, como ejemplo, presentamos nuevos enfoques para el diseño de multiplicadores de frecuencia, amplificadores de potencia, mezcladores y desfasadores en radiofrecuencia que específicamente aprovechan la ambipolaridad
Referências
Chaves, Ferney A., Jiménez, David, Sagade, Abhay A., Kim, Wonjae, Riikonen, Juha, Lipsanen, Harri, & Neumaier, Daniel. (2015). A physics-based model of gate-tunable metal–graphene contact resistance benchmarked against experimental data. 2D Materials, 2(2), 025006. https://doi.org/10.1088/2053-1583/2/2/025006
Cusati, Teresa, Fiori, Gianluca, Gahoi, Amit, Passi, Vikram, Lemme, Max C., Fortunelli, Alessandro, & Iannaccone, Giuseppe. (2017). Electrical properties of graphene-metal contacts. Scientific Reports, 7(1), 5109. https://doi.org/10.1038/s41598-017-05069-7
Das, Saptarshi, Demarteau, Marcel, & Roelofs, Andreas. (2014). Ambipolar Phosphorene Field Effect Transistor. ACS Nano, 8(11), 11730–11738. https://doi.org/10.1021/nn505868h
Gahoi, Amit, Kataria, Satender, Driussi, Francesco, Venica, Stefano, Pandey, Himadri, Esseni, David, Selmi, Luca, & Lemme, Max C. (2020). Dependable Contact Related Parameter Extraction in Graphene–Metal Junctions. Advanced Electronic Materials, 6(10), 2000386. https://doi.org/10.1002/aelm.202000386
Giubileo, Filippo, & Di Bartolomeo, Antonio. (2017). The role of contact resistance in graphene field-effect devices. Progress in Surface Science, 92(3), 143–175. https://doi.org/10.1016/j.progsurf.2017.05.002
Habibpour, Omid, Cherednichenko, Sergey, Vukusic, Josip, Yhland, Klas, & Stake, Jan. (2012). A subharmonic graphene FET mixer. IEEE Electron Device Letters, 33(1), 71–73. https://doi.org/10.1109/LED.2011.2170655
Habibpour, Omid, He, Zhongxia Simon, Strupinski, Wlodek, Rorsman, Niklas, Ciuk, Tymoteusz, Ciepielewski, Pawel, & Zirath, Herbert. (2017). A W-band MMIC Resistive Mixer Based on Epitaxial Graphene FET. IEEE Microwave and Wireless Components Letters, 27(2), 168–170. https://doi.org/10.1109/LMWC.2016.2646998
Habibpour, Omid, Vukusic, Josip, & Stake, Jan. (2013). A 30-GHz integrated subharmonic mixer based on a multichannel graphene FET. IEEE Transactions on Microwave Theory and Techniques, 61(2), 841–847. https://doi.org/10.1109/TMTT.2012.2236434
Han, Shu-Jen, Jenkins, Keith A., Valdes Garcia, Alberto, Franklin, Aaron D., Bol, Ageeth A., & Haensch, Wilfried. (2011). High-frequency graphene voltage amplifier. Nano Letters, 11(9), 3690–3693. https://doi.org/10.1021/nl2016637
Lin, Yen Fu, Xu, Yong, Wang, Sheng Tsung, Li, Song Lin, Yamamoto, Mahito, Aparecido-Ferreira, Alex, Li, Wenwu, Sun, Huabin, Nakaharai, Shu, Jian, Wen Bin, Ueno, Keiji, & Tsukagoshi, Kazuhito. (2014). Ambipolar MoTe2 transistors and their applications in logic circuits. Advanced Materials, 26, 3263–3269. https://doi.org/10.1002/adma.201305845
Maas, Stephen A. (1986). Microwave Mixers. Artech House.
Medina-Rull, Alberto, Pasadas, Francisco, Marin, Enrique G., Toral-Lopez, Alejandro, Cuesta, Juan, Godoy, Andrés, Jiménez, David, Ruiz, Francisco G., Jimélnez, D., & Ruiz, Francisco G. (2020). A Graphene Field-Effect Transistor Based Analogue Phase Shifter for High-Frequency Applications. IEEE Access, 8, 209055–209063. https://doi.org/10.1109/ACCESS.2020.3038153
Moldovan, Clara F., Vitale, Wolfgang A., Sharma, Pankaj, Tamagnone, Michele, Mosig, Juan R., & Ionescu, Adrian M. (2016). Graphene Quantum Capacitors for High Frequency Tunable Analog Applications. Nano Letters, 16(8), 4746–4753. https://doi.org/10.1021/acs.nanolett.5b05235
Norhakim, Nadia, Hawari, Huzein Fahmi, & Burhanudin, Zainal Arif. (2022). Assessing the Figures of Merit of Graphene-Based Radio Frequency Electronics: A Review of GFET in RF Technology. IEEE Access, 10, 17030–17042. https://doi.org/10.1109/ACCESS.2022.3147832
Pasadas, Francisco, Feijoo, Pedro C., Mavredakis, Nikolaos, Pacheco-Sanchez, Aníbal, Chaves, Ferney A., & Jiménez, David. (2022a). Compact modeling technology for the simulation of integrated circuits based on graphene field-effect transistors. Advanced Materials, n/a(n/a), 2201691. https://doi.org/https://doi.org/10.1002/adma.202201691
Pasadas, Francisco, Feijoo, Pedro C., Mavredakis, Nikolaos, Pacheco-Sanchez, Aníbal, Chaves, Ferney A., & Jiménez, David. (2022b). Compact modeling technology for the simulation of integrated circuits based on graphene field-effect transistors. Advanced Materials, n/a(n/a), 2201691. https://doi.org/https://doi.org/10.1002/adma.202201691
Pasadas, Francisco, & Jiménez, David. (2016a). Large-Signal Model of Graphene Field- Effect Transistors—Part II: Circuit Performance Benchmarking. IEEE Transactions on Electron Devices, 63(7), 2942–2947. https://doi.org/10.1109/TED.2016.2563464
Pasadas, Francisco, & Jiménez, David. (2016b). Large-Signal Model of Graphene Field-Effect Transistors - Part I: Compact Modeling of GFET Intrinsic Capacitances. IEEE Transactions on Electron Devices, 63(7), 2936–2941. https://doi.org/10.1109/TED.2016.2570426
Pasadas, Francisco, Medina-Rull, Alberto, Feijoo Guerro, Pedro Carlos, Pacheco-Sanchez, Anibal Uriel, G. Marin, Enrique, G. Ruiz, Francisco, Rodriguez, Noel, Godoy, Andrés, & Jiménez, David. (2021). Unveiling the impact of the bias dependent charge neutrality point on graphene based multi transistor applications. Nano Express. http://iopscience.iop.org/article/10.1088/2632-959X/abfdd0
Pasadas, Francisco, Wei, Wei, Pallecchi, Emiliano, Happy, Henri, & Jiménez, David. (2017). Small-Signal Model for 2D-Material Based FETs Targeting Radio-Frequency Applications: The Importance of Considering Nonreciprocal Capacitances. IEEE Transactions on Electron Devices, 64(11), 4715–4723. https://doi.org/10.1109/TED.2017.2749503
Saeed, Mohamed, Palacios, Paula, Wei, Muh-Dey, Baskent, Eyyub, Fan, Chun-Yu, Uzlu, Burkay, Wang, Kun-Ta, Hemmetter, Andreas, Wang, Zhenxing, Neumaier, Daniel, Lemme, Max C., & Negra, Renato. (2021). Graphene-Based Microwave Circuits: A Review. Advanced Materials, n/a(n/a), 2108473. https://doi.org/https://doi.org/10.1002/adma.202108473
Urban, Francesca, Lupina, Grzegorz, Grillo, Alessandro, Martucciello, Nadia, & Di Bartolomeo, Antonio. (2020). Contact resistance and mobility in back-gate graphene transistors. Nano Express, 1(1), 010001. https://doi.org/10.1088/2632-959x/ab7055
Wang, ZhenXing, Zhang, ZhiYong, & Peng, LianMao. (2012). Graphene-based ambipolar electronics for radio frequency applications. Chinese Science Bulletin, 57(23), 2956–2970. https://doi.org/10.1007/s11434-012-5143-x
Wang, Zhenxing, Zhang, Zhiyong, Xu, Huilong, Ding, Li, Wang, Sheng, & Peng, Lian-Mao. (2010). A high-performance top-gate graphene field-effect transistor based frequency doubler. Applied Physics Letters, 96(17), 173104. https://doi.org/10.1063/1.3413959
Wu, Yanqing, Farmer, Damon B., Zhu, Wenjuan, Han, Shu-Jen, Dimitrakopoulos, Christos D., Bol, Ageeth A., Avouris, Phaedon, & Lin, Yu-Ming. (2012). Three-terminal graphene negative differential resistance devices. ACS Nano, 6(3), 2610–2616. https://doi.org/10.1021/nn205106z
Xia, Jilin, Chen, Fang, Li, Jinghong, & Tao, Nongjian. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4(8), 505–509. https://doi.org/10.1038/nnano.2009.177
Yang, Xuebei, Liu, Guanxiong, Rostami, Masoud, Balandin, Alexander A., & Mohanram, Kartik. (2011). Graphene ambipolar multiplier phase detector. IEEE Electron Device Letters, 32(10), 1328–1330. https://doi.org/10.1109/LED.2011.2162576
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Os autores/as que publicam nesta revista concordam com os seguintes termos:
- Os autores/as terão os direitos morais do trabalho e cederão para a revista os direitos comerciais.
- Um ano após a sua publicação, a versão do editor estará em acesso aberto no site da editora, mas a revista manterá o copyright da obra.
- No caso dos autores desejarem asignar uma licença aberta Creative Commons (CC), poderão a solicitar escrevendo a publishing@eagora.org