Tam versus utaut models: a contrasting study of scholarly production and its bibliometric analysis
DOI:
https://doi.org/10.37467/revtechno.v11.4445Palabras clave:
Modelos de Aceptación Tecnológica, Análisis Bibliométrico, TAM, UTAUT 2, Web of Science (WoS), Mapa de visualización, VOSviewerResumen
El objetivo de esta investigación es revisar y comparar a través de un enfoque bibliométrico la TAM/TAM2/TAM3 y la UTAUT/UTAUT2 para determinar cuál es el modelo más adecuado para estudiar las nuevas tecnologías. Los datos se obtuvieron de la base de datos Web of Science. Se examinaron 2.450 publicaciones, relacionadas con TAM/TAM2/TAM3 y 5.145 publicaciones de la UTAUT/UTAUT2 durante el período 2016-2021. Los hallazgos confirman que cada vez más investigadores utilizan la UTAUT/UTAUT2. Esta revisión ofrece una visión holística que servirá para que futuros investigadores puedan seleccionar los modelos más apropiados en sus disciplinas de estudio.
Citas
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior. Englewood Cliffs, N.J: Prentice-Hall.
Al-Emran, M., & Granić, A. (2021). Is it still valid or outdated? A bibliometric analysis of the technology acceptance model and its applications from 2010 to 2020. In Recent advances in technology acceptance models and theories (pp. 1-12). Springer, Cham. https://doi.org/10.1007/978-3-030-64987-6_1
Alfadda, H. A., & Mahdi, H. S. (2021). Measuring students’ use of zoom application in language course based on the technology acceptance model (TAM/TAM2/TAM3). Journal of Psycholinguistic Research, 50(4), 883-900. https://doi.org/10.1007/s10936-020-09752-1
Alghazi, S. S., Kamsin, A., Almaiah, M. A., Wong, S. Y., & Shuib, L. (2021). For sustainable application of mobile learning: An extended utaut model to examine the effect of technical factors on the usage of mobile devices as a learning tool. Sustainability, 13(4), 1856. https://doi.org/10.3390/su13041856
Alturas, B. (2021). Models of acceptance and use of technology research trends: Literature review and exploratory bibliometric study. In Recent Advances in Technology Acceptance Models and Theories (pp. 13-28). Springer, Cham. https://doi.org/10.1007/978-3-030-64987-6_2
Ardanuy, J. (2012). Breve introducción a la bibliometría. La base de datos scopus y otros e-recursos del CBUES como instrumento de gestión de la actividad investigadora; 1.
Arfi, W. B., Nasr, I. B., Kondrateva, G., & Hikkerova, L. (2021). The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technological Forecasting and Social Change, 167, 120688. https://doi.org/10.1016/j.techfore.2021.120688
Balakrishnan, J., Abed, S. S., & Jones, P. (2022). The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?. Technological Forecasting and Social Change, 180, 121692. https://doi.org/10.1016/j.techfore.2022.121692
Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs.
Baynes, T. D. (2019). More than a spasm, less than a sign: Queer masculinity in American visual culture, 1915-1955. [Doctoral Thesis] The University of Western Ontario. Electronic Thesis and Dissertation Repository, 6238. https://ir.lib.uwo.ca/etd/6238
Bradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137, 85-86.
Burch, T.K. (2003) Demography in a new key: a theory of population theory. Demographic Research, 9(11), 263-284.
Caldevilla-Domínguez, D., Barrientos-Báez, A., & Blanco Pérez, M. (2022). The City in Cinema: Referenciality throughout the Filming Stages. Visual Review. International Visual Culture Review, 9(1), 29-47. https://doi.org/10.37467/gkarevvisual.v9.3084
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of informetrics, 5(1), 146-166. https://doi.org/10.1016/j.joi.2010.10.002
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. https://doi.org/10.2307/249008
Davis, F. D., & Warshaw, P. R. (1992). What do intention scales measure? The Journal of General Psychology, 119(4), 391-407. https://doi.org/10.1080/00221309.1992.9921181
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. http://dx.doi.org/10.1287/mnsc.35.8.982
Donthu, N., Kumar Badhotiya, G., Kumar, S., Soni, G. and Pandey, N. (2022), «A retrospective overview of Journal of Enterprise Information Management using bibliometric analysis», Journal of Enterprise Information Management, 35 (2),504-529. https://doi.org/10.1108/JEIM-09-2020-0375
Durieux, V. & Gevenois, P. (2010) Bibliometric indicators: quality measurements of scientific publication,” Radiology, 255 (2), 342–351. http://doi.org/10.1148/radiol.09090626
Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2), 130-132.
Gaviria-Marin, M., Merigó, J. M., & Baier-Fuentes, H. (2019). Knowledge management: A global examination based on bibliometric analysis. Technological Forecasting and Social Change, 140, 194-220. https://doi.org/10.1016/j.techfore.2018.07.006
Iqbal, J., & Sidhu, M. S. (2022). Acceptance of dance training system based on augmented reality and technology acceptance model (TAM/TAM2/TAM3). Virtual Reality, 26(1), 33-54. https://doi.org/10.1007/s10055-021-00529-y
Khan, T., Khan, K. D., Azhar, M. S., Shah, S. N. A., Uddin, M. M., & Khan, T. H. (2021). Mobile health services and the elderly: Assessing the determinants of technology adoption readiness in Pakistan. Journal of Public Affairs, e2685. https://doi.org/10.1002/pa.2685
Kumar, S., Pandey, N., Lim, W. M., Chatterjee, A. N., & Pandey, N. (2021). What do we know about transfer pricing? Insights from bibliometric analysis. Journal of Business Research, 134, 275-287. https://doi.org/10.1016/j.jbusres.2021.05.041
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington academy of sciences, 16(12), 317-323.
Pattnaik, D., Kumar, S., Burton, B., & Lim, W. M. (2022). Economic Modelling at thirty-five: A retrospective bibliometric survey. Economic Modelling, 107, 105712. https://doi.org/10.1016/j.econmod.2021.105712
Price, D. J. S. (1963). Little science, big science. New York: Columbia University Press.
Puriwat, W., & Tripopsakul, S. (2021). Understanding food delivery mobile application technology adoption: a UTAUT model integrating perceived fear of COVID-19. Emerging Science Journal, 5, 94-104. 10.28991/esj-2021-SPER-08
Rajak, M., & Shaw, K. (2021). An extension of technology acceptance model for mHealth user adoption. Technology in Society, 67, 101800. https://doi.org/10.1016/j.techsoc.2021.101800
Rogers, C. R. (1961). The process equation of psychotherapy. American journal of psychotherapy, 15(1), 27-45. https://doi.org/10.1176/appi.psychotherapy.1961.15.1.27
Rogers, E.M. (1962). Diffusion of innovations. Free Press.
Rueda, G., Gerdsri, P., & Kocaoglu, D. F. (2007, August). Bibliometrics and social network analysis of the nanotechnology field. In PICMET’07-2007 Portland international conference on management of engineering & technology (pp. 2905-2911). IEEE. 10.1109/PICMET.2007.4349633
Song, H., Ruan, W. J., & Jeon, Y. J. J. (2021). An integrated approach to the purchase decision making process of food-delivery apps: Focusing on the TAM/TAM2/TAM3 and AIDA models. International Journal of Hospitality Management, 95, 102943. https://doi.org/10.1016/j.ijhm.2021.102943
Suo, W. J., Goi, C. L., Goi, M. T., & Sim, A. K. (2022). Factors Influencing Behavioural Intention to Adopt the QR-Code Payment: Extending UTAUT2 Model. International Journal of Asian Business and Information Management (IJABIM), 13(2), 1-22. 10.4018/IJABIM.20220701.oa8
Tan, K. S., Chong, S. C., Lin, B., & Eze, U. C. (2009). Internet‐based ICT adoption: evidence from Malaysian SMEs. Industrial Management & Data Systems. 109 (2), 224-244. https://doi.org/10.1108/02635570910930118
Taneja, B., & Bharti, K. (2021). Mapping unified theory of acceptance and use of technology (UTAUT) 2: A taxonomical study using bibliometric visualisation. foresight. https://doi.org/10.1108/FS-08-2020-0079
Taylor, S., & Todd, P.A. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561–570. http://dx.doi.org/10.2307/249633
Thompson, R.L., Higgins, C.A., & Howell, J.M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 124-143. http://dx.doi.org/10.2307/249443
Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J.Y.L., & Xu, X. (2012). Consumer acceptance and use of Information technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
Wang, J., Li, X., Wang, P., Liu, Q., Deng, Z., & Wang, J. (2021). Research Trend of the Unified Theory of Acceptance and Use of Technology Theory: A Bibliometric Analysis. Sustainability, 14(1), 10. https://doi.org/10.3390/su14010010
White, H. D., & McCain, K. W. (1989). Bibliometrics. Annual review of information science and technology, 24, 119-186.
Xu, Z., Ge, Z., Wang, X., & Skare, M. (2021). Bibliometric analysis of technology adoption literature published from 1997 to 2020. Technological Forecasting and Social Change, 170, 120896. https://doi.org/10.1016/j.techfore.2021.120896
Zhang, X., Chen, H., Wang, W., & Ordóñez de Pablos, P. (2016). What is the role of IT in innovation? A bibliometric analysis of research development in IT innovation. Behaviour & Information Technology, 35(12), 1130-1143. https://doi.org/10.1080/0144929X.2016.1212403
Zhong, Y., Oh, S., & Moon, H. C. (2021). Service transformation under industry 4.0: Investigating acceptance of facial recognition payment through an extended technology acceptance model. Technology in Society, 64, 101515. https://doi.org/10.1016/j.techsoc.2020.101515
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Aquellos autores/as que publiquen en esta revista, aceptan los términos siguientes:
- Los autores/as conservarán los derechos morales sobre la obra y cederán a la revista los derechos comerciales.
- Transcurrido un año desde su publicación, la versión del editor pasará a estar en acceso abierto en la web de la editorial, pero la revista mantendrá el copyright de la obra.
- En el caso de que los autores deseen asignar una licencia abierta Creative Commons (CC), podrán solicitarla escribiendo a publishing@eagora.org