Microwave Models for Graphene Ambipolar Devices
An Engineering Teaching Perspective
DOI:
https://doi.org/10.37467/revtechno.v11.4457Keywords:
Ambipolar, Engineering, Graphene, Mixer, Multiplier, Phase shifter, Power amplifier, Radio-frequencyAbstract
In this article it iimplemented a set of circuit models to be exploited in conventional circuit simulators used in engineering degrees. The models capture the physics of the graphene-based transistors, characterized by the ambipolar conduction, and its resulting V-shaped transfer characteristics (current vs. gate voltage). These models can be exploited by the engineering students to explore ambipolar electronics opening the possibility to 1) redesigning and simplifying of conventional circuits; and 2)seeking of new functionalities in both analogue/RF and digital domains. In thisregard, as an example by just considering that the V-shaped transfer characteristicsbehaves as a parabola, we present new insights for the design of graphene-based RFpower amplifiers, mixers, phase shifters and frequency multipliers that specifically
References
Chaves, Ferney A., Jiménez, David, Sagade, Abhay A., Kim, Wonjae, Riikonen, Juha, Lipsanen, Harri, & Neumaier, Daniel. (2015). A physics-based model of gate-tunable metal–graphene contact resistance benchmarked against experimental data. 2D Materials, 2(2), 025006. https://doi.org/10.1088/2053-1583/2/2/025006
Cusati, Teresa, Fiori, Gianluca, Gahoi, Amit, Passi, Vikram, Lemme, Max C., Fortunelli, Alessandro, & Iannaccone, Giuseppe. (2017). Electrical properties of graphene-metal contacts. Scientific Reports, 7(1), 5109. https://doi.org/10.1038/s41598-017-05069-7
Das, Saptarshi, Demarteau, Marcel, & Roelofs, Andreas. (2014). Ambipolar Phosphorene Field Effect Transistor. ACS Nano, 8(11), 11730–11738. https://doi.org/10.1021/nn505868h
Gahoi, Amit, Kataria, Satender, Driussi, Francesco, Venica, Stefano, Pandey, Himadri, Esseni, David, Selmi, Luca, & Lemme, Max C. (2020). Dependable Contact Related Parameter Extraction in Graphene–Metal Junctions. Advanced Electronic Materials, 6(10), 2000386. https://doi.org/10.1002/aelm.202000386
Giubileo, Filippo, & Di Bartolomeo, Antonio. (2017). The role of contact resistance in graphene field-effect devices. Progress in Surface Science, 92(3), 143–175. https://doi.org/10.1016/j.progsurf.2017.05.002
Habibpour, Omid, Cherednichenko, Sergey, Vukusic, Josip, Yhland, Klas, & Stake, Jan. (2012). A subharmonic graphene FET mixer. IEEE Electron Device Letters, 33(1), 71–73. https://doi.org/10.1109/LED.2011.2170655
Habibpour, Omid, He, Zhongxia Simon, Strupinski, Wlodek, Rorsman, Niklas, Ciuk, Tymoteusz, Ciepielewski, Pawel, & Zirath, Herbert. (2017). A W-band MMIC Resistive Mixer Based on Epitaxial Graphene FET. IEEE Microwave and Wireless Components Letters, 27(2), 168–170. https://doi.org/10.1109/LMWC.2016.2646998
Habibpour, Omid, Vukusic, Josip, & Stake, Jan. (2013). A 30-GHz integrated subharmonic mixer based on a multichannel graphene FET. IEEE Transactions on Microwave Theory and Techniques, 61(2), 841–847. https://doi.org/10.1109/TMTT.2012.2236434
Han, Shu-Jen, Jenkins, Keith A., Valdes Garcia, Alberto, Franklin, Aaron D., Bol, Ageeth A., & Haensch, Wilfried. (2011). High-frequency graphene voltage amplifier. Nano Letters, 11(9), 3690–3693. https://doi.org/10.1021/nl2016637
Lin, Yen Fu, Xu, Yong, Wang, Sheng Tsung, Li, Song Lin, Yamamoto, Mahito, Aparecido-Ferreira, Alex, Li, Wenwu, Sun, Huabin, Nakaharai, Shu, Jian, Wen Bin, Ueno, Keiji, & Tsukagoshi, Kazuhito. (2014). Ambipolar MoTe2 transistors and their applications in logic circuits. Advanced Materials, 26, 3263–3269. https://doi.org/10.1002/adma.201305845
Maas, Stephen A. (1986). Microwave Mixers. Artech House.
Medina-Rull, Alberto, Pasadas, Francisco, Marin, Enrique G., Toral-Lopez, Alejandro, Cuesta, Juan, Godoy, Andrés, Jiménez, David, Ruiz, Francisco G., Jimélnez, D., & Ruiz, Francisco G. (2020). A Graphene Field-Effect Transistor Based Analogue Phase Shifter for High-Frequency Applications. IEEE Access, 8, 209055–209063. https://doi.org/10.1109/ACCESS.2020.3038153
Moldovan, Clara F., Vitale, Wolfgang A., Sharma, Pankaj, Tamagnone, Michele, Mosig, Juan R., & Ionescu, Adrian M. (2016). Graphene Quantum Capacitors for High Frequency Tunable Analog Applications. Nano Letters, 16(8), 4746–4753. https://doi.org/10.1021/acs.nanolett.5b05235
Norhakim, Nadia, Hawari, Huzein Fahmi, & Burhanudin, Zainal Arif. (2022). Assessing the Figures of Merit of Graphene-Based Radio Frequency Electronics: A Review of GFET in RF Technology. IEEE Access, 10, 17030–17042. https://doi.org/10.1109/ACCESS.2022.3147832
Pasadas, Francisco, Feijoo, Pedro C., Mavredakis, Nikolaos, Pacheco-Sanchez, Aníbal, Chaves, Ferney A., & Jiménez, David. (2022a). Compact modeling technology for the simulation of integrated circuits based on graphene field-effect transistors. Advanced Materials, n/a(n/a), 2201691. https://doi.org/https://doi.org/10.1002/adma.202201691
Pasadas, Francisco, Feijoo, Pedro C., Mavredakis, Nikolaos, Pacheco-Sanchez, Aníbal, Chaves, Ferney A., & Jiménez, David. (2022b). Compact modeling technology for the simulation of integrated circuits based on graphene field-effect transistors. Advanced Materials, n/a(n/a), 2201691. https://doi.org/https://doi.org/10.1002/adma.202201691
Pasadas, Francisco, & Jiménez, David. (2016a). Large-Signal Model of Graphene Field- Effect Transistors—Part II: Circuit Performance Benchmarking. IEEE Transactions on Electron Devices, 63(7), 2942–2947. https://doi.org/10.1109/TED.2016.2563464
Pasadas, Francisco, & Jiménez, David. (2016b). Large-Signal Model of Graphene Field-Effect Transistors - Part I: Compact Modeling of GFET Intrinsic Capacitances. IEEE Transactions on Electron Devices, 63(7), 2936–2941. https://doi.org/10.1109/TED.2016.2570426
Pasadas, Francisco, Medina-Rull, Alberto, Feijoo Guerro, Pedro Carlos, Pacheco-Sanchez, Anibal Uriel, G. Marin, Enrique, G. Ruiz, Francisco, Rodriguez, Noel, Godoy, Andrés, & Jiménez, David. (2021). Unveiling the impact of the bias dependent charge neutrality point on graphene based multi transistor applications. Nano Express. http://iopscience.iop.org/article/10.1088/2632-959X/abfdd0
Pasadas, Francisco, Wei, Wei, Pallecchi, Emiliano, Happy, Henri, & Jiménez, David. (2017). Small-Signal Model for 2D-Material Based FETs Targeting Radio-Frequency Applications: The Importance of Considering Nonreciprocal Capacitances. IEEE Transactions on Electron Devices, 64(11), 4715–4723. https://doi.org/10.1109/TED.2017.2749503
Saeed, Mohamed, Palacios, Paula, Wei, Muh-Dey, Baskent, Eyyub, Fan, Chun-Yu, Uzlu, Burkay, Wang, Kun-Ta, Hemmetter, Andreas, Wang, Zhenxing, Neumaier, Daniel, Lemme, Max C., & Negra, Renato. (2021). Graphene-Based Microwave Circuits: A Review. Advanced Materials, n/a(n/a), 2108473. https://doi.org/https://doi.org/10.1002/adma.202108473
Urban, Francesca, Lupina, Grzegorz, Grillo, Alessandro, Martucciello, Nadia, & Di Bartolomeo, Antonio. (2020). Contact resistance and mobility in back-gate graphene transistors. Nano Express, 1(1), 010001. https://doi.org/10.1088/2632-959x/ab7055
Wang, ZhenXing, Zhang, ZhiYong, & Peng, LianMao. (2012). Graphene-based ambipolar electronics for radio frequency applications. Chinese Science Bulletin, 57(23), 2956–2970. https://doi.org/10.1007/s11434-012-5143-x
Wang, Zhenxing, Zhang, Zhiyong, Xu, Huilong, Ding, Li, Wang, Sheng, & Peng, Lian-Mao. (2010). A high-performance top-gate graphene field-effect transistor based frequency doubler. Applied Physics Letters, 96(17), 173104. https://doi.org/10.1063/1.3413959
Wu, Yanqing, Farmer, Damon B., Zhu, Wenjuan, Han, Shu-Jen, Dimitrakopoulos, Christos D., Bol, Ageeth A., Avouris, Phaedon, & Lin, Yu-Ming. (2012). Three-terminal graphene negative differential resistance devices. ACS Nano, 6(3), 2610–2616. https://doi.org/10.1021/nn205106z
Xia, Jilin, Chen, Fang, Li, Jinghong, & Tao, Nongjian. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4(8), 505–509. https://doi.org/10.1038/nnano.2009.177
Yang, Xuebei, Liu, Guanxiong, Rostami, Masoud, Balandin, Alexander A., & Mohanram, Kartik. (2011). Graphene ambipolar multiplier phase detector. IEEE Electron Device Letters, 32(10), 1328–1330. https://doi.org/10.1109/LED.2011.2162576
Downloads
Published
How to Cite
Issue
Section
License
Those authors who publish in this journal accept the following terms:
- Authors will keep the moral right of the work and they will transfer the commercial rights.
- After 1 year from publication, the work shall thereafter be open access online on our website, but will retain copyright.
- In the event that the authors wish to assign an Creative Commons (CC) license, they may request it by writing to publishing@eagora.org