Microwave Models for Graphene Ambipolar Devices

An Engineering Teaching Perspective

Authors

  • Francisco Pasadas Laboratorio PEARL, Departamento de Electrónica y Tecnología de Computadores Universidad de Granada
  • Alberto Medina-Rull Laboratorio PEARL, Departamento de Electrónica y Tecnología de Computadores Universidad de Granada
  • Enrique G. Marín Laboratorio PEARL, Departamento de Electrónica y Tecnología de Computadores Universidad de Granada

DOI:

https://doi.org/10.37467/revtechno.v11.4457

Keywords:

Ambipolar, Engineering, Graphene, Mixer, Multiplier, Phase shifter, Power amplifier, Radio-frequency

Abstract

In this article it iimplemented a set of circuit models to be exploited in conventional circuit simulators used in engineering degrees. The models capture the physics of the graphene-based transistors, characterized by the ambipolar conduction, and its resulting V-shaped transfer characteristics (current vs. gate voltage). These models can be exploited by the engineering students to explore ambipolar electronics opening the possibility to 1) redesigning and simplifying of conventional circuits; and 2)seeking of new functionalities in both analogue/RF and digital domains. In thisregard, as an example by just considering that the V-shaped transfer characteristicsbehaves as a parabola, we present new insights for the design of graphene-based RFpower amplifiers, mixers, phase shifters and frequency multipliers that specifically

References

Chaves, Ferney A., Jiménez, David, Sagade, Abhay A., Kim, Wonjae, Riikonen, Juha, Lipsanen, Harri, & Neumaier, Daniel. (2015). A physics-based model of gate-tunable metal–graphene contact resistance benchmarked against experimental data. 2D Materials, 2(2), 025006. https://doi.org/10.1088/2053-1583/2/2/025006

Cusati, Teresa, Fiori, Gianluca, Gahoi, Amit, Passi, Vikram, Lemme, Max C., Fortunelli, Alessandro, & Iannaccone, Giuseppe. (2017). Electrical properties of graphene-metal contacts. Scientific Reports, 7(1), 5109. https://doi.org/10.1038/s41598-017-05069-7

Das, Saptarshi, Demarteau, Marcel, & Roelofs, Andreas. (2014). Ambipolar Phosphorene Field Effect Transistor. ACS Nano, 8(11), 11730–11738. https://doi.org/10.1021/nn505868h

Gahoi, Amit, Kataria, Satender, Driussi, Francesco, Venica, Stefano, Pandey, Himadri, Esseni, David, Selmi, Luca, & Lemme, Max C. (2020). Dependable Contact Related Parameter Extraction in Graphene–Metal Junctions. Advanced Electronic Materials, 6(10), 2000386. https://doi.org/10.1002/aelm.202000386

Giubileo, Filippo, & Di Bartolomeo, Antonio. (2017). The role of contact resistance in graphene field-effect devices. Progress in Surface Science, 92(3), 143–175. https://doi.org/10.1016/j.progsurf.2017.05.002

Habibpour, Omid, Cherednichenko, Sergey, Vukusic, Josip, Yhland, Klas, & Stake, Jan. (2012). A subharmonic graphene FET mixer. IEEE Electron Device Letters, 33(1), 71–73. https://doi.org/10.1109/LED.2011.2170655

Habibpour, Omid, He, Zhongxia Simon, Strupinski, Wlodek, Rorsman, Niklas, Ciuk, Tymoteusz, Ciepielewski, Pawel, & Zirath, Herbert. (2017). A W-band MMIC Resistive Mixer Based on Epitaxial Graphene FET. IEEE Microwave and Wireless Components Letters, 27(2), 168–170. https://doi.org/10.1109/LMWC.2016.2646998

Habibpour, Omid, Vukusic, Josip, & Stake, Jan. (2013). A 30-GHz integrated subharmonic mixer based on a multichannel graphene FET. IEEE Transactions on Microwave Theory and Techniques, 61(2), 841–847. https://doi.org/10.1109/TMTT.2012.2236434

Han, Shu-Jen, Jenkins, Keith A., Valdes Garcia, Alberto, Franklin, Aaron D., Bol, Ageeth A., & Haensch, Wilfried. (2011). High-frequency graphene voltage amplifier. Nano Letters, 11(9), 3690–3693. https://doi.org/10.1021/nl2016637

Lin, Yen Fu, Xu, Yong, Wang, Sheng Tsung, Li, Song Lin, Yamamoto, Mahito, Aparecido-Ferreira, Alex, Li, Wenwu, Sun, Huabin, Nakaharai, Shu, Jian, Wen Bin, Ueno, Keiji, & Tsukagoshi, Kazuhito. (2014). Ambipolar MoTe2 transistors and their applications in logic circuits. Advanced Materials, 26, 3263–3269. https://doi.org/10.1002/adma.201305845

Maas, Stephen A. (1986). Microwave Mixers. Artech House.

Medina-Rull, Alberto, Pasadas, Francisco, Marin, Enrique G., Toral-Lopez, Alejandro, Cuesta, Juan, Godoy, Andrés, Jiménez, David, Ruiz, Francisco G., Jimélnez, D., & Ruiz, Francisco G. (2020). A Graphene Field-Effect Transistor Based Analogue Phase Shifter for High-Frequency Applications. IEEE Access, 8, 209055–209063. https://doi.org/10.1109/ACCESS.2020.3038153

Moldovan, Clara F., Vitale, Wolfgang A., Sharma, Pankaj, Tamagnone, Michele, Mosig, Juan R., & Ionescu, Adrian M. (2016). Graphene Quantum Capacitors for High Frequency Tunable Analog Applications. Nano Letters, 16(8), 4746–4753. https://doi.org/10.1021/acs.nanolett.5b05235

Norhakim, Nadia, Hawari, Huzein Fahmi, & Burhanudin, Zainal Arif. (2022). Assessing the Figures of Merit of Graphene-Based Radio Frequency Electronics: A Review of GFET in RF Technology. IEEE Access, 10, 17030–17042. https://doi.org/10.1109/ACCESS.2022.3147832

Pasadas, Francisco, Feijoo, Pedro C., Mavredakis, Nikolaos, Pacheco-Sanchez, Aníbal, Chaves, Ferney A., & Jiménez, David. (2022a). Compact modeling technology for the simulation of integrated circuits based on graphene field-effect transistors. Advanced Materials, n/a(n/a), 2201691. https://doi.org/https://doi.org/10.1002/adma.202201691

Pasadas, Francisco, Feijoo, Pedro C., Mavredakis, Nikolaos, Pacheco-Sanchez, Aníbal, Chaves, Ferney A., & Jiménez, David. (2022b). Compact modeling technology for the simulation of integrated circuits based on graphene field-effect transistors. Advanced Materials, n/a(n/a), 2201691. https://doi.org/https://doi.org/10.1002/adma.202201691

Pasadas, Francisco, & Jiménez, David. (2016a). Large-Signal Model of Graphene Field- Effect Transistors—Part II: Circuit Performance Benchmarking. IEEE Transactions on Electron Devices, 63(7), 2942–2947. https://doi.org/10.1109/TED.2016.2563464

Pasadas, Francisco, & Jiménez, David. (2016b). Large-Signal Model of Graphene Field-Effect Transistors - Part I: Compact Modeling of GFET Intrinsic Capacitances. IEEE Transactions on Electron Devices, 63(7), 2936–2941. https://doi.org/10.1109/TED.2016.2570426

Pasadas, Francisco, Medina-Rull, Alberto, Feijoo Guerro, Pedro Carlos, Pacheco-Sanchez, Anibal Uriel, G. Marin, Enrique, G. Ruiz, Francisco, Rodriguez, Noel, Godoy, Andrés, & Jiménez, David. (2021). Unveiling the impact of the bias dependent charge neutrality point on graphene based multi transistor applications. Nano Express. http://iopscience.iop.org/article/10.1088/2632-959X/abfdd0

Pasadas, Francisco, Wei, Wei, Pallecchi, Emiliano, Happy, Henri, & Jiménez, David. (2017). Small-Signal Model for 2D-Material Based FETs Targeting Radio-Frequency Applications: The Importance of Considering Nonreciprocal Capacitances. IEEE Transactions on Electron Devices, 64(11), 4715–4723. https://doi.org/10.1109/TED.2017.2749503

Saeed, Mohamed, Palacios, Paula, Wei, Muh-Dey, Baskent, Eyyub, Fan, Chun-Yu, Uzlu, Burkay, Wang, Kun-Ta, Hemmetter, Andreas, Wang, Zhenxing, Neumaier, Daniel, Lemme, Max C., & Negra, Renato. (2021). Graphene-Based Microwave Circuits: A Review. Advanced Materials, n/a(n/a), 2108473. https://doi.org/https://doi.org/10.1002/adma.202108473

Urban, Francesca, Lupina, Grzegorz, Grillo, Alessandro, Martucciello, Nadia, & Di Bartolomeo, Antonio. (2020). Contact resistance and mobility in back-gate graphene transistors. Nano Express, 1(1), 010001. https://doi.org/10.1088/2632-959x/ab7055

Wang, ZhenXing, Zhang, ZhiYong, & Peng, LianMao. (2012). Graphene-based ambipolar electronics for radio frequency applications. Chinese Science Bulletin, 57(23), 2956–2970. https://doi.org/10.1007/s11434-012-5143-x

Wang, Zhenxing, Zhang, Zhiyong, Xu, Huilong, Ding, Li, Wang, Sheng, & Peng, Lian-Mao. (2010). A high-performance top-gate graphene field-effect transistor based frequency doubler. Applied Physics Letters, 96(17), 173104. https://doi.org/10.1063/1.3413959

Wu, Yanqing, Farmer, Damon B., Zhu, Wenjuan, Han, Shu-Jen, Dimitrakopoulos, Christos D., Bol, Ageeth A., Avouris, Phaedon, & Lin, Yu-Ming. (2012). Three-terminal graphene negative differential resistance devices. ACS Nano, 6(3), 2610–2616. https://doi.org/10.1021/nn205106z

Xia, Jilin, Chen, Fang, Li, Jinghong, & Tao, Nongjian. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4(8), 505–509. https://doi.org/10.1038/nnano.2009.177

Yang, Xuebei, Liu, Guanxiong, Rostami, Masoud, Balandin, Alexander A., & Mohanram, Kartik. (2011). Graphene ambipolar multiplier phase detector. IEEE Electron Device Letters, 32(10), 1328–1330. https://doi.org/10.1109/LED.2011.2162576

Published

2022-12-29

How to Cite

Pasadas, F., Medina-Rull, A., & Marín, E. G. (2022). Microwave Models for Graphene Ambipolar Devices: An Engineering Teaching Perspective. TECHNO REVIEW. International Technology, Science and Society Review Revista Internacional De Tecnología, Ciencia Y Sociedad, 11(5), 1–11. https://doi.org/10.37467/revtechno.v11.4457