Modelo de red neuronal artificial para la predicción del fenómeno “el Niño” en la región de Piura (Perú)

Autores

  • Oscar J. M. Peña Cáceres Universidad Nacional de Piura
  • Manuel A. More More Universidad Nacional de Piura
  • Rudy Espinoza Nima Universidad Nacional de Piura
  • Henry Silva Marchan Universidad Nacional de Tumbes

DOI:

https://doi.org/10.37467/revtechno.v13.4815

Palavras-chave:

Predicción, Fenómeno El Niño, Red Neuronal Artificial, Temperatura Superficial del Mar, Región Piura

Resumo

El Fenómeno El Niño es un evento de origen climático. En el año 2017 este evento impacto la región Piura, Perú. Las fuertes precipitaciones pluviales generaron el desborde el río Piura que afecto los distritos de Piura, Castilla, Catacaos y Cura Mori. El objetivo del estudio es identificar las variables más influyentes y disponer de un modelo que prediga la ocurrencia del Fenómeno El Niño en la región Piura, mediante el uso de Redes Neuronales Artificiales. Los resultados indican que la Temperatura Superficial del Mar es la variable más influyente. El modelo tiene una precisión del 82% de precisión.

Referências

Álvarez Vega, M., Quirós Mora, L. M., & Cortés Badilla, M. V. (2020). Inteligencia artificial y aprendizaje automático en medicina. Revista Medica Sinergia, 5(8), e557. https://doi.org/10.31434/RMS.V5I8.557

Anculle, T., Graco, M., Vásquez, L., García, W., & Gutiérrez, D. (2022). Contribución de las ondas Kelvin a las anomalías térmicas de las aguas costeras frente al Perú durante El Niño 2015 -2016 y el Niño Costero 2017. Boletin Instituto del Mar del Perú, 36(2), 362-384. https://doi.org/10.53554/boletin.v36i2.343

Becerra Correa, N., & Carmona, E. A. (2012). Aprendizaje computacional. Universidad Autónoma de Guerrero Fundación FABBECOR.ONG, 13. http://www.chessbase.com/EvENts/events.asp?pid=155

Charles, Y. P., Lamas, V., & Ntilikina, Y. (2022). Artificial intelligence and treatment algorithms in spine surgery. Revue de Chirurgie Orthopedique et Traumatologique. https://doi.org/10.1016/J.RCOT.2022.06.027

de León, C. L. C. D., Limon, S. V., Gonzalez-Calleros, J. M., & Treviño, M. A. D. V. (2021). Artificial neural network for the extraction of dynamic parameters of robots from incomplete information of their movement. Revista Colombiana de Computacion, 22(2), 37-47. https://doi.org/10.29375/25392115.4298

Díaz Cordero, G. (2012). El Cambio Climático. Ciencia y Sociedad, XXXVII(2), 227-240.

Hijar, G., Bonilla, C., Munayco, C. V., Gutierrez, E. L., & Ramos, W. (2016). Fenómeno el niño y desastres naturales: intervenciones en salud pública para la preparación y respuesta. Revista Peruana de Medicina Experimental y Salud Publica, 33(2), 300-310. https://doi.org/10.17843/RPMESP.2016.332.2205

Huaman, L., & Takahashi, K. (2017). Generación de información y monitoreo del Fenómeno El Niño. Geophysical Research Letters, 43(15), 8230-8239. http://met.igp.gob.pe/publicaciones/Divulgacion_PPR_El_Nino_IGP_201710.pdf

Jiménez-Carrión, M., Gutiérrez-Segura, F., & Celi-Pinzón, J. (2018). Modeling and prediction of el niño in piura using artificial neuronal networks. Informacion Tecnologica, 29(4), 303-318. https://doi.org/10.4067/s0718-07642018000400303

Montealegre, J. E. (2007). Modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia. En Ideam. http://www.ideam.gov.co/documents/21021/440517/Modelo+Institucional+El+Niño+-+La+Niña.pdf/232c8740-c6ee-4a73-a8f7-17e49c5edda0

Neteo. (2022). La gran teoría unificada de la Inteligencia Artificial. https://www.abc.es/ciencia/abci-gran-teoria-unificada-inteligencia-artificial-201004060300-124677973843_noticia.html?ref=https%3A%2F%2Fwww.google.com%2F

Pacheco, H., Montilla, A., Méndez, W., Hipatia-Delgado, M., Zambrano, D., Pacheco, H., Montilla, A., Méndez, W., Hipatia-Delgado, M., & Zambrano, D. (2019). Causas y consecuencias de las lluvias extraordinarias de 2017 en la costa ecuatoriana: el caso de la provincia Manabí. Boletín de Investigaciones Marinas y Costeras - INVEMAR, 48(2), 45-70. https://doi.org/10.25268/BIMC.INVEMAR.2019.48.2.766

Perdigón-Llanes, R., & González-Benítez, N. (2022). Artificial neural networks in bovine milk production forecasting. Revista Colombiana de Computacion, 23(1), 20-33. https://doi.org/10.29375/25392115.4209

Ramírez, I. J., & Briones, F. (2017). Understanding the El Niño Costero of 2017: The Definition Problem and Challenges of Climate Forecasting and Disaster Responses. International Journal of Disaster Risk Science, 8(4), 489-492. https://doi.org/10.1007/s13753-017-0151-8

Takahashi, K. (2016). Modelado teórico-matemático de El Niño extraordinario. Boletín Técnico, 3, 2016. https://doi.org/10.1029/2011GL04736

Publicado

2023-02-28

Como Citar

Peña Cáceres, O. J. M., More More, M. A., Espinoza Nima, R. ., & Silva Marchan, H. (2023). Modelo de red neuronal artificial para la predicción del fenómeno “el Niño” en la región de Piura (Perú). TECHNO REVIEW. International Technology, Science and Society Review Revista Internacional De Tecnología, Ciencia Y Sociedad, 13(4), 1–11. https://doi.org/10.37467/revtechno.v13.4815

Edição

Seção

Artigos de pesquisa (monográfico)