Aprobación del presidente de Perú basado en análisis de sentimientos en Twitter
DOI:
https://doi.org/10.37467/revtechno.v11.4396Palavras-chave:
Procesamiento del Lenguaje Natural, Análisis de Sentimiento, Redes Neuronales Artificiales, Estimación de Aprobación de PolíticosResumo
La tasa de aceptación popular es un concepto que se utiliza para explicar el aumento del apoyo popular hacia un personaje político, de un país, en un periodo determinado. Esta cifra se extrae a través de encuestas solicitadas que llegan a cierta muestra limitada de ciudadanos dispuestos y además son caras de realizar.
En esta investigación se ha implementado un sistema automático para la estimación de la aprobación popular del presidente del Perú utilizando datos de Twitter. El método es simple, rápido y de alta sensibilidad, pudiendo extenderse rápidamente para otros casos de análisis de opinión.
Referências
Al Shammari, A. S. (2018). Real-time Twitter Sentiment Analysis using 3-way classifier. 21st Saudi Computer Society National Computer Conference, NCC 2018, 1–3. https://doi.org/10.1109/NCG.2018.8593205
Albawi, S., Mohammed, T. A. y Al-Zawi, S. (2017). Understanding of a convolutional neural network. International Conference on Engineering and Technology (ICET), 2017, pp. 1-6, doi: 10.1109/ ICEngTechnol.2017.8308186.
Ansari, M. Z., Aziz, M. B., Siddiqui, M. O., Mehra, H., y Singh, K. P. (2020). Analysis of Political Sentiment Orientations on Twitter. Procedia Computer Science, 167, 1821–1828. https://doi.org/10.1016/J.PROCS.2020.03.201
Balli, C., Guzel, M. S., Bostanci, E., & Mishra, A. (2022). Sentimental Analysis of Twitter Users from Turkish Content with Natural Language Processing. Computational Intelligence and Neuroscience, 2022. https://doi. org/10.1155/2022/2455160
Bird, S., Klein, E. y Loper, E. (2019, 4 de septiembre). Natural language processing with Python: analyzing text with the natural language toolki. https://www.nltk.org/book/.
Cambridge University Press. (2008). Stemming and lemmatization.
Cardellino, C. (2016). Spanish Billion Words Corpus and Embeddings. https://crscardellino.ar/SBWCE/
Chambi, m. F. (2019). Análisis de opinión del microblogging twitter por la clasificación al mundial de fútbol rusia
-2018 de la selección peruana de fútbol, usando el framework spark.[tesis de pregrado, universidadnacional del antiplano]. http://repositorio.unap.edu.pe/handle/UNAP/13506
Cui, H., Lin, Y., y Utsuro, T. (2018). Sentiment Analysis of Tweets by CNN utilizing Tweets with Emoji as Training Data. Wisdom, August, 1–8. https://sentic.net/wisdom2018cui.pdf
Cuzcano, X. M., & Ayma, V. H. (2020). A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter. International Journal of Advanced Computer Science and Applications, 11(10), 132–138. https://doi.org/10.14569/IJACSA.2020.0111018
Canal N. (2021, October 21). Datum: Aprobación del presidente Pedro Castillo llega al 40 % | Canal N. 21 de Octubre Del 2021. https://canaln.pe/actualidad/pedro-castillo-aprobacion-mandatario-llega-al-40- segun-datum-n440163
Ferilli, S., Esposito, F., y Grieco, D. (2014). Automatic learning of linguistic resources for stopword removal and stemming from text. Procedia Computer Science, 38(C), 116–123. https://doi.org/10.1016/j. procs.2014.10.019
Gandhi, U. D., Malarvizhi Kumar, P., Chandra Babu, G., y Karthick, G. (2021). Sentiment Analysis on Twitter Data by Using Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). Wireless Personal Communications, 0123456789. https://doi.org/10.1007/s11277-021-08580-3
Google, L. L. C. (2005). Youtube. https://www.youtube.com/
Han, S. (2022). googletrans · PyPI. https://pypi.org/project/googletrans/
Harshith. (2019). Text Preprocessing in Natural Language Processing. Towardsdatascience. https:// towardsdatascience.com/text-preprocessing-in-natural-language-processing-using-python- 6113ff5decd8
IPSOS. (2020). Ficha Técnica: Encuesta Nacional Urbana. https://www.ipsos.com/sites/default/files/ct/news/ documents/2020-04/opinion_data_-_22_de_abril_del_2020.pdf
Khurana Batra, P., Saxena, A., Shruti, y Goel, C. (2020). Election result prediction using twitter sentiments analysis. PDGC 2020 - 2020 6th International Conference on Parallel, Distributed and Grid Computing, 182–185. https://doi.org/10.1109/PDGC50313.2020.9315789.
Kingma, D. P., y Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–15. https://arxiv.org/ abs/1412.6980.
Kumar, S., Morstatter, F., y Liu, H. (2013). Twitter Data Analytics. SpringerBriefs in Conputer science. https://doi. org/10.1007/978-1-4614-9372-3.
Kydros, D., & Magoulios, G. (2019). Twitter content analysis on Greek political leaders. MIBES Transactions. vol.
(1), pp. 30–44.
Leonard Richardson. (2020). Beautiful Soup Documentation. https://www.crummy.com/software/BeautifulSoup/ bs4/doc/
Liu, Z., Lin, Y., & Sun, M. (2020). Representation Learning and NLP. Representation Learning for Natural Language Processing, 1–11. https://doi.org/10.1007/978-981-15-5573-2_1
Maharani, W., & Effendy, V. (2022). Big five personality prediction based in Indonesian tweets using machine learning methods. International Journal of Electrical and Computer Engineering, 12(2), 1973–1981. https://doi.org/10.11591/ijece.v12i2.pp1973-1981
Medianero Burga, D. (2014). Metodología de Estudios de Línea de Base. Pensamiento Crítico, 15, 061. https://doi. org/10.15381/pc.v15i0.8994
Meta Inc. (2004). Facebook. https://www.facebook.com/
Mohammad, S. A. I. F. M. M., Urney, P. E. D. T., y Canada, C. (2012). CROWDSOURCING A WORD – EMOTION
ASSOCIATION LEXICON. Computational Intelligence. https://onlinelibrary.wiley.com/doi/10.1111/ j.1467-8640.2012.00460.x
Mongodb. (2021). What Is Unstructured Data? | MongoDB. https://www.mongodb.com/unstructured-data Monhaler, Edna Maria; Matias Miranda, A. F. (2017). La diversidad lingüística del español en el mundo
contemporáneo: propuestas de actividades didácticas. En Actas Del III Congreso Internacional SICELE. Investigación e Innovación En ELE. Evaluación y Variedad Lingüística Del Español. https://cvc.cervantes. es/ensenanza/biblioteca_ele/sicele/sicele03/006_matiasmonheler.htm
Parmezan, A. R. S., Souza, V. M. A., y Batista, G. E. A. P. A. (2019). Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model. Information Sciences, 484, 302–337. https://doi.org/10.1016/j.ins.2019.01.076
Paul Davison, R. S. (2020). Clubhouse. https://www.clubhouse.com/
Pennington, J., Socher, R., y Manning, C. D. (2014). GloVe: Global Vectors for Word Representation. https://nlp. stanford.edu/pubs/glove.pdf
Poornima, A., Nataraj, N., Nithya, R., Nirmala, D., y Divya, P. (2022). Sentiment Analysis of Tweets in Twitter Using CNN. 2022 International Conference on Computer Communication and Informatics, ICCCI 2022, 25–28. https://doi.org/10.1109/ICCCI54379.2022.9740779
Poria, S., Hussain, A., y Cambria, E. (2018). Multimodal Sentiment Analysis (Vol. 8). Springer International Publishing. https://doi.org/10.1007/978-3-319-95020-4
Prastyo, P. H., Sumi, A. S., Dian, A. W., & Permanasari, A. E. (2020). Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel. Journal of Information Systems Engineering and Business Intelligence, 6(2), 112. https://doi.org/10.20473/ jisebi.6.2.112-122
Rai, A., & Borah, S. (2021). Study of Various Methods for Tokenization. Lecture Notes in Networks and Systems, 137, 193–200. https://doi.org/10.1007/978-981-15-6198-6_18
Rodríguez, C. G. and Tule, L. G. (2019). Honduras 2019: Persistent economic and social instability and institutional weakness. Revista de Ciencia Politica, 40, 379–400. https://www.scielo.cl/scielo.php?script=sci_ arttext&pid=S0718-090X2020005000112&lng=en&nrm=iso&tlng=en
Ross Ihaka, R. G. (1993). R: The R Project for Statistical Computing. https://www.r-project.org/
Shaghaghi, N., Calle, A. M., Manuel Zuluaga Fernandez, J., Hussain, M., Kamdar, Y., & Ghosh, S. (2021). Twitter Sentiment Analysis and Political Approval Ratings for Situational Awareness. Proceedings - 2021 IEEE International Conference on Cognitive and Computational Aspects of Situation Management, CogSIMA 2021, 59–65. https://doi.org/10.1109/COGSIMA51574.2021.9475935
Sharma, A., & Ghose, U. (2020). Sentimental Analysis of Twitter Data with respect to General Elections in India.
Procedia Computer Science, 173(2019), 325–334. https://doi.org/10.1016/j.procs.2020.06.038
Silva, H., Andrade, E., Araujo, D., & Dantas, J. (2022). Sentiment Analysis of Tweets Related to SUS before and during COVID-19 pandemic. IEEE Latin America Transactions, 20(1), 6–13. https://doi.org/10.1109/ TLA.2022.9662168
Statista. (2021). Media usage in an internet minute as of August 2021. Statista; Springer Vienna. https://doi. org/10.1007/s13278-021-00853-w
Twitter. (2006). Twitter. https://twitter.com/
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Os autores/as que publicam nesta revista concordam com os seguintes termos:
- Os autores/as terão os direitos morais do trabalho e cederão para a revista os direitos comerciais.
- Um ano após a sua publicação, a versão do editor estará em acesso aberto no site da editora, mas a revista manterá o copyright da obra.
- No caso dos autores desejarem asignar uma licença aberta Creative Commons (CC), poderão a solicitar escrevendo a publishing@eagora.org