Robustez de las redes urbanas densamente pobladas en relación con la propagación del tráfico
DOI:
https://doi.org/10.37467/gka-revtechno.v8.2042Palavras-chave:
Robustez, Vulnerabilidad, Grafos, Centralidad intermedia, Centralidad Cercana, Ataque Aleatorio, Ataque DirigidoResumo
Analizar, la morfología, robustez o vulnerabilidad de ciudades densamente pobladas es un desafío para los investigadores contemporáneos. Los estudios sobre la resiliencia de infraestructuras urbanas se dan por la presencia de eventos adversos recurrentes o desastres esporádicos. Estos acontecimientos, obligan a interrumpir intersecciones o tramos de calles momentánea o permanentemente. Para las mediciones usamos las propiedades de grafos de redes y algoritmos computacionales, simulando ataques aleatorios y dirigidos. Finalmente, en los resultados identificamos la ubicación de lugares críticos que contienen intersecciones y secciones de calle con mayor centralidad de intermediación y menor promedio de cercanía.
Referências
Yaoli, W., Song, G., & Yu, L. (2013). Exploration into urban street closeness centrality and its application methods:A case study of Qingdao. GEOGRAPHICAL RESEARCH,2013, 32(3): 452-464.
Yin H., H. B. (2016). Evaluating Disruption in Rail Transit Network: A Case Study of Beijing Subway. Procedia Engineering .
Barros, J. X. (2014). Urban Growth in Latin American Cities. Published by ProQuest LLC 2014 .
Glabowski, M., Musznick, B., Nowa, P., & Zwierzykowsk, P. (2014). Review and Performance Analysis of Shortest Path Problem Solving Algorithms. International Journalon Advancesin Software, vol7no1&2 .
Wang J., L. S. (2017). Research on the Robustness of Interdependent Networks under Localized Attack. Applied Sciences .
Wang, J. (2015). Resilience of Self-Organised and Top-Down Planned Cities—A Case Study on London and Beijing Street Networks. PLOS ONE 10(12): e0141736.
Wang, K., & Fu, X. (2017). Research on Centrality of Urban Transport Network Nodes. : AIP Conference Proceedings 1839, 020181 (2017); doi: 10.1063/1.4982546 .
Wehmuth, K., Fleury, É., & Ziviani , A. (2017). MultiAspect Graphs: Algebraic Representation and Algorithms. Algorithms .
Zhang, K., & Batterman , S. (2013). Air pollution and health risks due to vehicle traffic. Science of the Total Environment 450–451 (2013) 307–316 .
Zou, Z., Xiao , Y., & Gao, J. (2013). Robustness analysis of urban transit network based on complex networks theory. Kybernetes .
Arcaute, E., Molinero, C., Hatna, E., Murcio, R., Vargas-Ruiz, C., & Masucci, A. P. (2016). Cities and regions in Britain through hierarchical percolation. The Royal Society/doi: 10.1098/rsos.150691 .
Askarian, A., Xu, R., & Faragó, A. (2016). Utilizing Network Structure to Accelerate Markov Chain Monte Carlo Algorithms. Algorithms .
Bader D.A., K. S. (2007). Approximating Betweenness Centrality . In: Bonato A., Chung F.R.K. (eds) Algorithms and Models for the Web-Graph. WAW 2007. Lecture Notes in Computer Science, vol 4863. Springer, Berlin, Heidelberg .
Batty, M. (2013). Resilient Cities, Networks, and Disruption. Environment and Planning B: Planning and Design, 40(4), 571–573 .
Boeing, G. (2017). OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks. Computers, Environment and Urban Systems. 65, 126-139 .
BRYAN R., R. (2005). Globalization and Latin American Cities. Volume 29.1 110–23International Journal of Urban and Regional Research .
Carra, G., & Barthelemy, M. (2017). The fundamental diagram of urbanization. arXiv:1609.06982 [physics.soc-ph] .
da Cunha, J., & Rodríguez Vignoli, J. (2009). Crecimiento urbano y movilidad en América Latina. Revista Latinoamericana de Población, 3 (4-5), 27-64 .
Flamino, J., Norman, A., & Wyatt, M. (2017). Modeling smart growth of cities through entropy and logistics. arXiv:1707.02360 [physics.soc-ph] .
Ganin, A. A., Kitsak, M., Marchese, D., Keisler, J. M., Seager, T., & Linkov, I. (2017). Resilience and efficiency in transportation networks. Science Advances .
Jun-qiang L, L.-h. Y. (2017). Medición de vulnerabilidad de la red de carreteras con análisis de sensibilidad. PLoS ONE 12 (1): e0170292. https://doi.org/10.1371/journal.pone.0170292 .
Ji, S., & Yan, Z. (2017). Refining Approximating Betweenness Centrality Based on Samplings. arXiv: 1608.04472 [cs.SI] .
Lemes A. and Sacomato M. (2016). Actor centrality in Network Projects and scientific performance: an exploratory study. RAI Revista de Administração e Inovação .
Li K., & He, Y. (2017). The Complex Network Reliability and Influential Nodes. AIP Conference Proceedings 1864, 020144 (2017); doi: 10.1063/1.4992961 .
Li, D., Fu, B., Wang, Y., Lu, G., Berezin, Y., & Stanley, H. (2014). Percolation transition in dynamical traffic network with evolving critical bottlenecks. National Academy of Sciences/doi: 10.1073/pnas.1419185112 .
Liu, Z., & Zhao, S. (2015). Characteristics of road network forms in historic districts of Japan. Frontiers of Architectural Research .
Masucci, A. P., & Molinero, C. (2016). Robustness and Closeness Centrality for Self-Organized and Planned Cities. The European Physical Journal B .
Mohamad, W., & Said, I. (2014). A review of variables of urban street connectivity. IOP Conf. Ser.: Earth Environ. Sci. 18012173 .
Pratt, G. C. (2015). Traffic, Air Pollution, Minority and Socio-Economic Status: Addressing Inequities in Exposure and Risk. International Journal of Environmental Research and Public Health, 12(5), 5355–5372. http://doi.org/10.3390/ijerph120505355 .
Pratt, G., Vadali, M., Kvale, D., & Ellickson, K. (2015). Traffic, Air Pollution, Minority and Socio-Economic Status: Addressing Inequities in Exposure and Risk. International Journal of Environmental Research and Public Health, 12(5), 5355–53 .
Roy Chowdhury, I. (2015). Traffic Congestion and Environmental Quality: A Case Study of Kolkata City. International Journal of Humanities and Social Science Invention .
Shauhrat, S., Chopra, T., & Melissa , M. (2016). A network-based framework for assessing infrastructure resilience: a case study of the London metro system. DOI: 10.1098/rsif.2016.0113 .
Shao, S., Huang, X., Stanley, H., & Havlin, S. (2015). Percolation of localized attack on complex networks. New Journal of Physics .
Solé-Ribalta, A., Gómez, S., & Arenas, A. (2016). A model to identify urban traffic congestion hotspots in complex networks. Royal Society Open Science .
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Os autores/as que publicam nesta revista concordam com os seguintes termos:
- Os autores/as terão os direitos morais do trabalho e cederão para a revista os direitos comerciais.
- Um ano após a sua publicação, a versão do editor estará em acesso aberto no site da editora, mas a revista manterá o copyright da obra.
- No caso dos autores desejarem asignar uma licença aberta Creative Commons (CC), poderão a solicitar escrevendo a publishing@eagora.org