Synthesis of Biogenic silver nanoparticles using plant growth-promoting bacteria: Potential use as biocontrol agent against phytopathogens

作者

  • Divya Mittal Department of Biotechnology and Central research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana India.
  • Arun Kumar Department of Biotechnology, Shoolini University, Solan, HP, India
  • Bhuvaneshwari Balasubramaniam Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
  • Rahul Thakur Department of Biotechnology and Central research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana India.
  • Samarjeet Singh Siwal Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana India.
  • Reena V. Saini Department of Biotechnology and Central research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana India.
  • Raju K. Gupta Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
  • Adesh K. Saini Department of Biotechnology and Central research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana India.

##plugins.pubIds.doi.readerDisplayName##:

https://doi.org/10.37819/bph.001.01.0130

关键词:

Biogenic Nanoparticles, Green Synthesis, Plant growth promotion, Seeratia, Burkholderia

摘要

Biogenic nanoparticles (NPs) derived from microbes present an excellent opportunity to deal with various challenges in medicine, diagnosis, environment and agriculture. In the area of agriculture sciences, researchers are facing challenges related to excessive utilization of pesticides which can be answered by utilizing plant growth-promoting (PGP) microbes. Herein, we have employed the culture filtrate of two PBP bacteria strains, Serratia marcescens and Burkholderia cepacia to prepare biogenic silver NPs. The biogenic silver NPs were characterized by various techniques viz. UV-VIS spectroscopy, SEM, XRD and FTIR. The biogenic AgNPs were able to control the growth of phytopathogenic fungi Aspergillus niger, A. fumigatus, Fusarium oxysporum, Pythium sp., and Rosellinia sp. by more than 80% as examined by in vitro growth reduction on agar medium. Very significantly, the growth inhibition of seedlings by phytopathogenic fungi was efficiently rescued using biogenic AgNPs derived from PGP bacteria. These results indicate the potential use of biogenic NPs to reduce the burden of chemical-based pesticides.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

参考

Abdel-Azeem, A., Nada, A. A., O’donovan, A., Thakur, V. K., & Elkelish, A. (2020). Mycogenic Silver Nanoparticles From Endophytic Trichoderma atroviride with Antimicrobial Activity. Journal of Renewable Materials, 8(2), 171–185. http://dx.doi.org/10.32604/jrm.2020.08960

Ajaz, S., Ahmed, T., Shahid, M., Noman, M., Shah, A. A., Mehmood, M. A., Abbas, A., Cheema, A. I., Iqbal, M. Z., & Li, B. (2021). Bioinspired green synthesis of silver nanoparticles by using a native Bacillus sp. strain AW1-2: Characterization and antifungal activity against Colletotrichum falcatum Went. Enzyme and Microbial Technology, 144, 109745. https://doi.org/10.1016/j.enzmictec.2021.109745

Ates, B., Koytepe, S., Ulu, A., Gurses, C., & Thakur, V. K. (2020). Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chemical Reviews, 120(17), 9304–9362. https://doi.org/10.1021/acs.chemrev.9b00553

Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 15(1), 15-22. https://doi.org/10.1007/s10311-016-0600-4

Devi, U., Khatri, I., Kumar, N., Sharma, D., Subramanian, S., & Saini, A. K. (2013). Draft genome sequence of plant-growth-promoting rhizobacterium Serratia fonticola strain AU-AP2C, isolated from the pea rhizosphere. Genome announcements, 1(6), e01022-13. https://doi.org/10.1128/genomeA.01022-13

Djaya, L., Istifadah, N., Hartati, S., & Joni, I. M. (2019). In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS). Biocatalysis and Agricultural Biotechnology, 19, 101153. https://doi.org/10.1016/j.bcab.2019.101153

Ghiuță, I., Cristea, D., Croitoru, C., Kost, J., Wenkert, R., Vyrides, I., Anayiotos, A. and Munteanu, D.(2018). Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Applied Surface Science, 438, 66-73. https://doi.org/10.1016/j.apsusc.2017.09.163

Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A MolBiomol Spectrosc 106:170–174 https://doi.org/10.1016/j.saa.2012.12.087

Gupta, H., Saini, R. V., Pagadala, V., Kumar, N., Sharma, D. K., & Saini, A. K. (2016). Analysis of plant growth promoting potential of endophytes isolated from Echinacea purpurea and Lonicera japonica. Journal of soil science and plant nutrition, 16(3), 558-577. http://dx.doi.org/10.4067/S0718-95162016005000025

Kah, M., Beulke, S., Tiede, K., & Hofmann, T. (2013). Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2012.671750

Khatri, I., Kaur, S., Devi, U., Kumar, N., Sharma, D., Subramanian, S., & Saini, A. K. (2013). Draft genome sequence of plant growth-promoting rhizobacterium Pantoea sp. strain AS-PWVM4. Genome announcements, 1(6), e00947-13.

Kumari, R., Saini A. K., Kumar, A., Saini, R. V. (2020). Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. Journal of Biological Inorganic Chemistry. 2020 Feb;25(1):23-37. https://doi.org/10.1007/s00775-019-01729-3

Li, J., Tian, B., Li, T., Dai, S., Weng, Y., Lu, J., Xu, X., Jin, Y., Pang, R., & Hua, Y. (2018). Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. International journal of nanomedicine, 13, 1411. https://doi.10.2147/IJN.S149079

Lin, N., Wang, C., Ding, J., Su, L., Xu, L., Zhang, B., Zhang, Y., & Fan, J. (2020). Efficacy of nanoparticle encapsulation on suppressing oxidation and enhancing antifungal activity of cyclic lipopeptides produced by Bacillus subtilis. Colloids and Surfaces B: Biointerfaces, 193, 111143. https://doi.org/10.1016/j.colsurfb.2020.111143

Manjunatha, S. B., Biradar, D. P., & Aladakatti, Y. R. (2016). Nanotechnology and its applications in agriculture: A review. Journal of farm Sciences, 29(1), 1-13.

Mishra, S., Singh, B. R., Naqvi, A. H., & Singh, H. B. (2017). Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Scientific reports, 7(1), 1-15. https://doi.org/10.1038/srep45154

Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. Plos one, 9(5), e97881. https://doi.org/10.1371/journal.pone.0097881

Mittal, D., Shukla, R., Verma, S., Sagar, A., Verma, K. S., Pandey, A., ... & Saini, A. K. (2019). Fire in pine grown regions of Himalayas depletes cultivable plant growth promoting beneficial microbes in the soil. Applied Soil Ecology, 139, 117-124. https://doi.org/10.1016/j.apsoil.2019.03.020

Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179(3), 154-163. https://doi.org/10.1016/j.plantsci.2010.04.012

Narayan, O. P., Verma, N., Singh, A. K., Oelmüller, R., Kumar, M., Prasad, D., Kapoor, R., Dua, M., & Johri, A. K. (2017). Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Scientific reports, 7(1), 1-11 https://doi.org/10.1038/s41598-017-12944-w

Patel, H., & Krishnamurthy, R. (2015). Antimicrobial efficiency of biologically synthesized nanoparticles using root extract of Plumbago zeylanica as biofertilizer application. International Journal of Bioassays, 4(11), 4473-4475.

Petatan-Sagahon, I., Anducho-Reyes, M. A., Silva-Rojas, H. V., Arana-Cuenca, A., Tellez-Jurado, A., Cárdenas-Álvarez, I. O., & Mercado-Flores, Y. (2011). Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora. International Journal of Molecular Sciences, 12(9), 5522-5537. https://doi.org/10.3390/ijms12095522

Qin J, Tong Z, Zhan Y, Buisson C, Song F, He K, Nielsen-LeRoux C, Guo S (2020) A Bacillus thuringiensis chitin-binding protein is involved in insect peritrophic matrix adhesion and takes part in the infection process. Toxins 12(4):252 https://doi.org/10.3390/toxins12040252

Raizada, P., Priya, B., Thakur, P., & Singh, P. (2016). Solar light induced photo degradation of oxy-tetra-cyline using Zr doped TiO2/CaO based nanocomposite. http://nopr.niscair.res.in/handle/123456789/35068

Rana, A. K., Mishra, Y. K., Gupta, V. K., & Thakur, V. K. (2021). Sustainable materials in the removal of pesticides from contaminated water: Perspective on macro to nanoscale cellulose. Science of The Total Environment, 797, 149129. https://doi.org/10.1016/j.scitotenv.2021.149129

Smith, K., Evans, D. A., & El-Hiti, G. A. (2008). Role of modern chemistry in sustainable arable crop protection. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 623-637. https://doi.org/10.1098/rstb.2007.2174

Stephenson, G. R., Coats, J. R., & Yamamoto, H. (2001). Pesticide use and world food production: risks and benefits. In Expert Committee on Weeds Comité d’experts en malherbologie. Proceedings of the 2000 National Meeting (pp. 9-15).

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677. https://doi.org/10.1038/nature01014

Zahra, Z., Arshad, M., Rafique, R., Mahmood, A., Habib, A., Qazi, I. A., & Khan, S. A. (2015). Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Journal of agricultural and food chemistry, 63(31), 6876-6882. https://doi.org/10.1021/acs.jafc.5b01611

##submission.downloads##

已出版

2021-10-20