Computational prediction of electrical and thermal properties of graphene and BaTiO3 reinforced epoxy nanocomposites
DOI:
https://doi.org/10.37819/bph.001.01.0132Keywords:
Epoxy, Barium titanate, Graphene nanoplatelets, Dielectric properties, Thermal propertiesAbstract
Graphene based materials e.g., graphene oxide (GO), reduced graphene oxide (RGO) and graphene nano platelets (GNP) as well as Barium titanate (BaTiO3) are emerging reinforcing agents which upon mixing with epoxy provides composite materials with superior mechanical, electrical and thermal properties as well as shielding against electromagnetic (EM) radiations. Inclusion of the aforementioned reinforcing agents has shown to improve the performance, however, the extent of improvement has remained uncertain. In this study, a computational modelling approach was adopted using COMSOL Multiphysics software in conjunction with Bayesian statistical analysis to investigate the effects of including various filler materials e.g. GO, RGO, GNP and BaTiO3 in influencing the direct current (DC) conductivity (σ), dielectric constant (ε) and thermal properties on the resulting epoxy polymer matrix composites. The simulation of epoxy composites were performed for different volume percentage of the filler materials by varying the geometry of the filler material. It was observed that the content of GO, RGO, GNPs and the thickness of graphene nanoplatelets can alter the DC conductivity, dielectric constant, and thermal properties of the epoxy matrix. The lower thickness of GNPs was found to offer the larger value of DC conductivity, thermal conductivity and thermal diffusivity than rest of the graphene nanocomposites, while, the RGO showed better dielectric constant value than neat epoxy, and GO, GNP nanocomposites. Similarly, BaTiO3 nanoparticles content and diameter were observed to alter the dielectric constant, DC conductivity and thermal properties of modified epoxy in several order magnitude than neat epoxy. In this way, the higher diameter particles of BaTiO3 showed better DC conductivity properties, dielectric constant value, thermal conductivity and thermal diffusivity. Moreover, this research provides guidance for further computational examination on the selection of GNP and BaTiO3 materials for the enhancement of the electrical and thermal properties of the epoxy matrix.
Downloads
References
Atif, R., Shyha, I., & Inam, F. (2016). Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites-A review. In Polymers. https://doi.org/10.3390/polym8080281
Barber, P., Balasubramanian, S., Anguchamy, Y., Gong, S., Wibowo, A., Gao, H., Ploehn, H. J., & Loye, H. C. Zur. (2009). Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials. https://doi.org/10.3390/ma2041697
Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018
Bikky, R., Badi, N., & Bensaoula, A. (2010). Effective Medium Theory of Nanodielectrics for Embedded Energy Storage Capacitors. Comsol.De.
Caradonna, A., Badini, C., Padovano, E., & Pietroluongo, M. (2019). Electrical and thermal conductivity of epoxy-carbon filler composites processed by calendaring. Materials. https://doi.org/10.3390/ma12091522
Carotenuto, G., Romeo, V., Cannavaro, I., Roncato, D., Martorana, B., & Gosso, M. (2012). Graphene-polymer composites. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/40/1/012018
Chikhi, M., Agoudjil, B., Haddadi, M., & Boudenne, A. (2013). Numerical modelling of the effective thermal conductivity of heterogeneous materials. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705711424921
Cho, K. S. (2016). Polymer physics. In Springer Series in Materials Science. https://doi.org/10.1007/978-94-017-7564-9_4
Cho, S. D., Lee, S. Y., Hyun, J. G., & Paik, K. W. (2005). Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-005-6454-3
Ekanath, D. M., Badi, N., & Bensaoula, A. (2011). Modeling and Simulation of Artificial Core-Shell Based Nanodielectrics for Electrostatic Capacitors Applications. Comsol Conference.
Friedrich, K., & Almajid, A. A. (2013). Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Applied Composite Materials, 20(2), 107–128. https://doi.org/10.1007/s10443-012-9258-7
Galpaya, D., Wang, M., Liu, M., Motta, N., Waclawik, E., & Yan, C. (2012). Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene, 01(02), 30–49. https://doi.org/10.4236/graphene.2012.12005
Gresil, M., Wang, Z., Poutrel, Q. A., & Soutis, C. (2017). Thermal Diffusivity Mapping of Graphene Based Polymer Nanocomposites. Scientific Reports. https://doi.org/10.1038/s41598-017-05866-0
Hass, J., De Heer, W. A., & Conrad, E. H. (2008). The growth and morphology of epitaxial multilayer graphene. In Journal of Physics Condensed Matter. https://doi.org/10.1088/0953-8984/20/32/323202
Hou, H., Dai, W., Yan, Q., Lv, L., Alam, F. E., Yang, M., Yao, Y., Zeng, X., Xu, J. Bin, Yu, J., Jiang, N., & Lin, C. Te. (2018). Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. Journal of Materials Chemistry A. https://doi.org/10.1039/c8ta03937b
Jarosinski, L., Rybak, A., Gaska, K., Kmita, G., Porebska, R., & Kapusta, C. (2017). Enhanced thermal conductivity of graphene nanoplatelets epoxy composites. Materials Science- Poland. https://doi.org/10.1515/msp-2017-0028
Kargar, F., Barani, Z., Salgado, R., Debnath, B., Lewis, J. S., Aytan, E., Lake, R. K., & Balandin, A. A. (2018). Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.8b16616
Kim, D. S., Baek, C., Ma, H. J., & Kim, D. K. (2016). Enhanced dielectric permittivity of BaTiO3/epoxy resin composites by particle alignment. Ceramics International. https://doi.org/10.1016/j.ceramint.2016.01.103
Korattanawittaya, S., Petcharoen, K., Sangwan, W., Tangboriboon, N., Wattanakul, K., & Sirivat, A. (2017). Durable compliant electrode based on graphene and natural rubber. Polymer Engineering and Science. https://doi.org/10.1002/pen.24392
Kultzow, R., & Mainguy, B. (2001). Low dielectric constant and low shrinkage epoxy system for power electronics applications. Proceedings of the Electrical/Electronics Insulation Conference. https://doi.org/10.1109/EEIC.2001.965629
Lewis, J. S., Barani, Z., Magana, A. S., Kargar, F., & Balandin, A. A. (2019). Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Materials Research Express. https://doi.org/10.1088/2053-1591/ab2215
Li, Y., Zhang, H., Porwal, H., Huang, Z., Bilotti, E., & Peijs, T. (2017). Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2017.01.007
Lindley, D. V. (1980). Approximate Bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa, 31(1), 223–245. https://doi.org/10.1007/BF02888353
Luo, S., Shen, Y., Yu, S., Wan, Y., Liao, W. H., Sun, R., & Wong, C. P. (2017). Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy and Environmental Science. https://doi.org/10.1039/c6ee03190k
Marra, F., D’Aloia, A. G., Tamburrano, A., Ochando, I. M., De Bellis, G., Ellis, G., & Sarto, M. S. (2016). Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets. Polymers. https://doi.org/10.3390/polym8080272
Marsden, A. J., Papageorgiou, D. G., Vallés, C., Liscio, A., Palermo, V., Bissett, M. A., Young, R. J., & Kinloch, I. A. (2018). Electrical percolation in graphene-polymer composites. In 2D Materials. https://doi.org/10.1088/2053-1583/aac055
Mather, P. T., Luo, X., & Rousseau, I. A. (2009). Shape memory polymer research. In Annual Review of Materials Research. https://doi.org/10.1146/annurev-matsci-082908-145419
McGrail, B. T., Sehirlioglu, A., & Pentzer, E. (2015). Polymer composites for thermoelectric applications. Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.201408431
Mekala, R., & Badi, N. (2013). Modeling and Simulation of High Permittivity Core-shell Ferroelectric Polymers for Energy Storage Solutions. COMSOL Conference.
Ming, P., Zhang, Y., Bao, J., Liu, G., Li, Z., Jiang, L., & Cheng, Q. (2015). Bioinspired highly electrically conductive graphene-epoxy layered composites. RSC Advances. https://doi.org/10.1039/c5ra00233h
Oladele, I. O., Omotosho, T. F., & Adediran, A. A. (2020). Polymer-Based Composites: An Indispensable Material for Present and Future Applications. International Journal of Polymer Science, 2020, 1–12. https://doi.org/10.1155/2020/8834518
Pant, H. C., Patra, M. K., Verma, A., Vadera, S. R., & Kumar, N. (2006). Study of the dielectric properties of barium titanate-polymer composites. Acta Materialia. https://doi.org/10.1016/j.actamat.2006.02.031
Pathak, A. K., Borah, M., Gupta, A., Yokozeki, T., & Dhakate, S. R. (2016). Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Composites Science and Technology. https://doi.org/10.1016/j.compscitech.2016.09.007
Phan, T. T. M., Chu, N. C., Luu, V. B., Nguyen Xuan, H., Martin, I., & Carriere, P. (2016). The role of epoxy matrix occlusions within BaTiO3 nanoparticles on the dielectric properties of functionalized BaTiO3/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2016.08.018
Phan, T. T. M., Chu, N. C., Luu, V. B., Nguyen Xuan, H., Pham, D. T., Martin, I., & Carrière, P. (2016). Enhancement of polarization property of silane-modified BaTiO3 nanoparticles and its effect in increasing dielectric property of epoxy/BaTiO3 nanocomposites. Journal of Science: Advanced Materials and Devices. https://doi.org/10.1016/j.jsamd.2016.04.005
Popielarz, R., & Chiang, C. K. (2007). Polymer composites with the dielectric constant comparable to that of barium titanate ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. https://doi.org/10.1016/j.mseb.2007.01.035
R. Byron Bird Warren E. Stewart Edwin N. Lightfoo, Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006). Transport Phenomena, Revised 2nd Edition. John Wiley & Sons, Inc.
Rosner, G. L. (2020). Bayesian Methods in Regulatory Science. Statistics in Biopharmaceutical Research, 12(2), 130–136. https://doi.org/10.1080/19466315.2019.1668843
Schumacher, J., Fideu, P., Ziegmann, G., & Herrmann, A. (2009). A Consistent Environment for the Numerical Prediction of the Properties of Composite Materials. COMSOL Conference.
Shahil, K. M. F., & Balandin, A. A. (2012a). Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters. https://doi.org/10.1021/nl203906r
Shahil, K. M. F., & Balandin, A. A. (2012b). Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications. https://doi.org/10.1016/j.ssc.2012.04.034
Tang, G., Jiang, Z. G., Li, X., Zhang, H. Bin, Hong, S., & Yu, Z. Z. (2014). Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2014.08.013
Tomer, V., Polizos, G., Manias, E., & Randall, C. A. (2010). Epoxy-based nanocomposites for electrical energy storage. I: Effects of montmorillonite and barium titanate nanofillers. Journal of Applied Physics. https://doi.org/10.1063/1.3487275
van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., & van Aken, M. A. G. (2014). A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research. Child Development, 85(3), 842–860. https://doi.org/10.1111/cdev.12169
Wang, Z., Nelson, J. K., Koratkar, N., Schadler, L. S., Hillborg, H., & Zhao, S. (2011). Dielectric properties of electrospun barium titanate fibers/graphene/ silicone rubber composites. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP. https://doi.org/10.1109/CEIDP.2011.6232738
Wang, Zepu, Nelson, J. K., Miao, J., Linhardt, R. J., Schadler, L. S., Hillborg, H., & Zhao, S. (2012). Effect of high aspect ratio filler on dielectric properties of polymer composites: A study on barium titanate fibers and graphene platelets. IEEE Transactions on Dielectrics and Electrical Insulation. https://doi.org/10.1109/TDEI.2012.6215100
Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., & Kim, J. K. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Advanced Materials, 26(31), 5480–5487. https://doi.org/10.1002/adma.201305293
Zandiatashbar, A., Lee, G. H., An, S. J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C. R., Hone, J., & Koratkar, N. (2014). Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications. https://doi.org/10.1038/ncomms4186
Zhang, C., Chi, Q., Dong, J., Cui, Y., Wang, X., Liu, L., & Lei, Q. (2016). Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Scientific Reports. https://doi.org/10.1038/srep33508
Zhao, S., Chang, H., Chen, S., Cui, J., & Yan, Y. (2016). High-performance and multifunctional epoxy composites filled with epoxide-functionalized graphene. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2016.09.036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Raghvendra Kumar Mishra, Saurav Goel, Hamed Yazdani Nezhad
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This article is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license, which permits copy and redistributes the material in any medium or format for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms, you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorsed you or your use. If you remix, transform or build upon the material, you may not distribute the modified material.