An experimental study of PMMA precision cryogenic micro-milling

Authors

  • Ying Yan Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
  • Yujia Sun Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China.
  • Bo Li Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China.
  • Ping Zhou Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China.

DOI:

https://doi.org/10.37819/bph.001.01.0123

Keywords:

Cryogenic machining, Micromilling, Surface roughness, Material removal, Polymer materials

Abstract

Polymethyl methacrylate (PMMA) has been used more and more widely in the fields of microfluidic devices and high-precision optical components due to its excellent mechanical and optical properties. Micro-milling is one of the methods that has been used in the machining of polymer materials. The machinability of PMMA is highly dependent on temperature, and the cryogenic method is also applied to control the processing temperature. In this work, the PMMA was milled with different processing parameters at the temperature of -55℃ and 25℃. The influence of each milling parameter on the surface quality under different temperature conditions were investigated. According to the results, the cutting depth is the dominant factor that influenced the surface roughness. The shape accuracy of the rectangular microgroove processed under low-temperature conditions is better. The material removal mechanism under different temperatures was also discussed, and the material is cut in a brittle way under low temperatures.

Downloads

Download data is not yet available.

References

Albert J.S., Mark A.L. & John S.S. (2004). End Milling of Elastomers—Fixture Design and Tool Effectiveness for Material Removal. Journal of Manufacturing Science and Engineering(1), https://doi:10.1115/1.1616951.

Atkins A.G., Lee C.S. & Caddell R.M. (1975). Time-temperature dependent fracture toughness of PMMA. Journal of Materials Science(8), https://doi:10.1007/BF00540829.

Chen P.C., Pan C.W., Lee W.C. & Li K.M. (2014). An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate. The International Journal of Advanced Manufacturing Technology(9-12), https://doi:10.1007/s00170-013-5555-

Cowie J.M.G., & Arrighi V. (2007).Polymers: Chemistry and Physics of Modern Materials, Third Edition.CRC Press.

Han X.W. (2016). Study on PMMA Polymer Thermal Engraving Technology for Microfluidic Analysis Chips(Doctoral Dissertation,Harbin Institute of Technology, in Chinese).

Jirapattarasilp K. & Obma S. (2012). Tool Wear in Vertical Milling of Polymethyl-methacrylate Sheet. AASRI Procedia, https://doi:10.1016/j.aasri.2012.11.026.

Kobayashi A. & Hirakawa K. (1984). Ultraprecision Machining of Plastics. Part 1. Polymethyl Methacrylate. Polymer-Plastics Technology and Engineering(1), https://doi:10.1080/03602558408070029.

Korkmaz E., Onler R. & Ozdoganlar O.B. (2017). Micromilling of Poly( methyl methacrylate, PMMA) Using Crystal Diamond Tools. Procedia Manufacturing(01), https://doi:10.1016/j.promfg.2017.07.017.

Korkmaz E., Onler R. & Ozdoganlar O.B. (2017).Micromilling of Poly(methyl methacrylate, PMMA) Using Single-Crystal Diamond Tools. Procedia Manufacturing, https://doi:10.1016/j.promfg.2017.07.017.

Li Y.G., Yan P., Huang Y. & Shan S.J. (2016). Preparation of PMMA microlens array based on X-ray mobile lithography.Infrared and laser engineering(06), 224-228. https://doi:CNKI:SUN:HWYJ.0.2016-06-034.

Lin B.C. (2003). Microfluidic chip lab and its functionalization. Journal of China Pharmaceutical University(01), https://doi:CNKI:SUN:ZGYD.0.2003-01-000.

Luo Y., Lou Z.F., Chu D.N., Liu C., Wang L.D. (2004). Production of glass microfluidic chip. Nanotechn-ology and precision engineering(01),20-23. https://doi:CNKI:SUN:NMJM.0.2004-01-003.

Okuda K., Tsuneyoshi T., Li W. & Shibahara H. (2009). Study on Cutting of Micro Channel by End Mill with Small Diameter. Key Engineering Materials, https://doi:10.4028/www.scientific.net/KEM.407-408.351.

Spierings G.A.C.M. (1991). Compositional effects in the dissolution of multicomponent silicate glasses in aqueous HF solutions. Journal of Materials Science(12), https://doi:10.1007/BF01124681.

Sun J.H., Guan F.Y., Zhu X.F.... & Deng T. (2016). Micro-fabricated packed gas chromatography column based on laser etching technology. Journal of Chromatography A(01), https://doi:10.1016/j.chroma.2015.12.001.

Wu C.J., Jin Z.H. et al. (2007). Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate. Micromech. Microeng. https://doi:17 (2007) 2393–2397.

Yang Q. & Li G.X. (2013). Research progress on micro-molding of polymers and their composites. Polymer notification(09),107-115. https://doi:10.14028/j.cnki.1003-3726.2013.09.007.

Yu M.F., Zeng H.M., Zhang H. & Que D.W. (2014). Research progress and application progress of microfluidic chip technology. Plant protection(04),1-8. https://doi:CNKI:SUN:ZWBH.0.2014-04-001.

Zheng X.L., Yan J.W. & Yang J. (2011). Research progress on materials and processing methods of microfluidic chips. Sensors and Microsystems(06),1-4+7. https://doi:10.13873/j.1000-97872011.06.016.

Downloads

Published

2021-10-20

How to Cite

Yan, Y. ., Sun, Y. ., Li, B. ., & Zhou, P. . (2021). An experimental study of PMMA precision cryogenic micro-milling. Biomaterials and Polymers Horizon, 1(1), 15–21. https://doi.org/10.37819/bph.001.01.0123