Antibiofilm Activity of Methanol Extract of Rumex dentatus Against Pseudomonas aeruginosa

Authors

  • Maryam Pezeshki Najafabadi Mahdieh Medical Diagnosis Charity Center, Iran
  • Maryam Mohammadi-Sichani Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
  • Mohammad Javad Kazemi Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
  • Mohammad Sadegh Shirsalimian 5Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Majid Tavakoli Lorestan Agricultural and Natural Resources Research Center, Khorramabad, Lorestan, Iran

DOI:

https://doi.org/10.37819/biosis.001.01.0044

Keywords:

Pseudomonas aeruginosa, Plant extracts, Urinary Tract Infections, Burns, Biofilm

Abstract

Biofilm formation of Pseudomonas aeruginosa makes up a sizeable proportion of hospital-acquired infections, because bacteria in biofilms can resist antibiotic treatment. The extracellular polymeric substance of P. aeruginosa biofilm is an imprecise collection of extracellular polysaccharides, proteins and microbial cells. Rumex dentatus belongs to polygonaceae family. This family can be found in Middle East. The aim of this present study was to assess the effect of various concentrations of methanol extract of Rumex dentatus on biofilm formation of Pseudomonas aeruginosa after 48 h and 72 h. In this experimental study we collected Rumex dentatus from Khoramabad, Iran. The working extracts were 250, 125, 62.5, 31.25, 15.62, 7.81, 3.9, 1.95, 0.97 and 0.48 mg/ml. We used microtiter plate method to grow P. aeruginosa biofilm and assess the antibiofilm activity of plant extract. The composition of methanol extract obtained from Rumex dentatus was studied by gas chromatography. The minimum biofilm inhibitory concentration (MBIC) for P. aeruginosa found to be 250 mg/ml. GC-MS  analyses indicated that these fractions contained a variety of compounds including Bicyclo (3.1.1) heptan- 3 -one, 2, 6, 6- trimethyl,  Bicyclo (3.1.1) heptan, 6, 6- dimethyl and Eucalyptol. There were consequential correlations between antibiofilm activity and the concentration of extracts after 48 and 72 h.

Downloads

Download data is not yet available.

References

Abou Elfotoh M.A., K.A. Shams, K.P. Anthony, A.A. Shahat, M.T. Ibrahim, N.M. Abdelhady, N.S. Abdel Azim, F.M. Hammouda, M.M. El-Missiry, & M.A. Saleh. (2013). Lipophilic constituents of Rumex vesicarius L. and Rumex dentatus L. Antioxidants, 2, 167-180. https://doi.org/10.3390/antiox2030167

Alikhani M.Y., Z. Karimi Tabar, F. Mihani, E. Kalantar, P. Karami, M. Sadeghi, S. Ahdi Khosroshahi, & S. Farajnia. (2014). Antimicrobial resistance patterns and prevalence of blaPER-1 and blaVEB-1 Genes Among ESBL-producing Pseudomonas aeruginosa isolates in west of Iran. Jundishapur Journal of Microbiology, 7, e8888. https://dx.doi.org/10.5812%2Fjjm.8888

Azizi O., M.R. Shakibaie, F. Modarresi, & F. Shahcheraghi. (2015). Molecular detection of Class-D OXA carbapenemase genes in biofilm and non-biofilm forming clinical isolates of Acinetobacter baumannii. Jundishapur Journal of Microbiology, 8, e21042. https://dx.doi.org/10.5812%2Fjjm.21042

Bacalso M., T. Xu, K. Yeung, & D. Zheng. (2011). Biofilm formation of Pseudomonas aeruginosa PA14 required lasI and stimulated by the Pseudomonas quinolone signal although salicylic acid inhibition is independent of the pqs Pathway. Journal of Experimental Microbiology and Immunology, 15, 84-89.

Cardoso N., T.T. Cavalcante, A.X. Araujo, H.S. Santos, M.R. Albuquerque, P.N. Bandeira, R.M. Cunha, B.S. Cavada, & E.H. Teixeira. (2012). Antimicrobial and antibiofilm action of casbane diterpene from Croton nepetaefolius against oral bacteria. Archives of Oral Biology, 57, 550-555. https://doi.org/10.1016/j.archoralbio.2011.10.016

Elzaawely A.S. & Tawata. (2012). Antioxidant capacity and phenolic content of Rumex dentatus L. grown in Egypt. Journal of Crop Science and Biotechnology, 15, 59-64. https://doi.org/10.1007/s12892-011-0063-x

Fatima N., M. Zia, R. Rehman, Z. Rizvi, S. Ahmad, B. Mirza, & M. Chaudhary. (2009). Biological activities of Rumex dentatus L: evaluation of methanol and hexane extracts. African Journal of Biotechnology, 8, 6945-6951.

Hameed I.G. Dastagir. (2009). Nutritional analyses of Rumex hastatus D. Don, Rumex dentatus Linn and Rumex nepalensis Spreng. African Journal of Biotechnology, 8, 4131-4133.

Harmsen M., L. Yang, S.J. Pamp, & T. Tolker-Nielsen. (2010). An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology & Medical Microbiology, 59, 253-268. https://doi.org/10.1111/j.1574-695X.2010.00690.x

Hussain F., B. Ahmad, I. Hameed, G. Dastagir, P. Sanaullah, & S. Azam. (2010). Antibacterial, antifungal and insecticidal activities of some selected medicinal plants of polygonaceae. African Journal of Biotechnology, 9, 5032-5036.

Kim H.-S., & H.-D. Park. (2013). Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS ONE, 8, e76106. https://dx.doi.org/10.1371%2Fjournal.pone.0076106

Lihua L., W. Jianhuit, Y. Jialini, L. Yayin, & L. Guanxin. (2013). Effects of allicin on the formation of Pseudomonas aeruginosa biofilm and the production of quorum-sensing controlled virulence factors. Polish Journal Microbiology. 62, 243-251.

Mittal R., S. Aggarwal, S. Sharma, S. Chhibber, & K. Harjai. (2009). Urinary tract infections caused by Pseudomonas aeruginosa: A mini review. Journal of Infection and Public Health, 2, 101-111. https://doi.org/10.1016/j.jiph.2009.08.003

Mohanty S., S. Mishra, P. Jena, B. Jacob, B. Sarkar, & A. Sonawane. (2011). An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 8, 916-924. https://doi.org/10.1016/j.nano.2011.11.007

Nascimento G.G.F., J. Locatelli, P.C. Freitas, & G.L. Silva. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal Microbiology, 31, 247-256. https://doi.org/10.1590/S1517-83822000000400003

Nisa H., A.N. Kamili, S.A. Bandh, S.-u. Amin, B.A. Lone, & J.A. Parray. (2013). Phytochemical screening, antimicrobial and antioxidant efficacy of different extracts of Rumex dentatus L. - A locally used medicinal herb of Kashmir Himalaya. Asian Pacific Journal of Tropical Disease, 3, 434–440. https://dx.doi.org/10.1016%2FS2222-1808(13)60097-3

Oskay M., D. Oskay, & F. Kalyoncu. (2009). Activity of some plant extracts against multi-drug resistant human pathogens. Iranian Journal of Pharmaceutical Research, 8, 293-300.

Pezeshki Najafabadi, M. , Mohammadi-Sichani, M., Kazemi, M. J., Shirsalimian, M., & Tavakoli, M. (2016). Investigation of the chemical composition and different effects of a Rumex dentatus methanol extract against drug resistant Pseudomonas aeruginosa isolates. Iranian Red Crescent Medical Journal, 18(12), e27064. http://dx.doi.org/10.5812/ircmj.27064

Pitts B., Hamilton, M.A., Zelver, N., & Stewart, P.S. (2003). A microtiter-plate screening method for biofilm disinfection and removal. Journal of Microbiological Methods, 54, 269-276. https://doi.org/10.1016/S0167-7012(03)00034-4

Stepanovic S., D. Vukovic, I. Dakic, B. Savic, & M. Svabic-Vlahovic. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40, 175-179. https://doi.org/10.1016/S0167-7012(00)00122-6

Sutter V., & V. Hurst. (1966). Sources of Pseudomonas aeruginosa infection in burns: study of wound and rectal cultures with phage typing. Annals of Surgery, 163, 597–602. https://dx.doi.org/10.1097%2F00000658-196604000-00013

Taj M., H. Mukhtiar, S. Inayat Ur Rahman, F. Ijaz, F. Gul, A. Muhammad Afzal, S. Hassan, & Z. Ahmad. (2014). In-vitro antibacterial study of stem extract of Rumex dentatus against different bacterial pathogenic strains. American-Eurasian Journal of Agricultural & Environmental Sciences, 14, 199-202. https://dx.doi.org/10.5829/idosi.aejaes.2014.14.03.12309

Varposhti M., A. Abdi Ali, P. Mohammadi, & A. Saboora. (2013). Effects of extracts and an essential oil from some medicinal plants against biofilm formation of Pseudomonas aeruginosa. Journal of Medical Microbiology and Infectious Diseases, 1, 36-40.

Wadood H., & A. Sabri. (2013). Screening, characterization and biofilm formation of nickel resistant bacteria. Polish Journal of Microbiology, 62, 411-418.

Walker T., H. Bais, E. Deziel, H. Schweizer, L. Rahme, R. Fall, & J. Vivanco. (2004). Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiology, 134, 320-331. https://doi.org/10.1104/pp.103.027888

Wiegand I., K. Hilpert, & R.E.W. Hancock. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3, 163-175. https://doi.org/10.1038/nprot.2007.521

Yahya M., M. Irahim, W. Zawawi, & U. Hamid. (2014). Biofilm killing effects of Chromolaena odorata extracts against Pseudomonas aeruginosa. Research Journal of Phytochemistry, 8, 64-73. http://dx.doi.org/10.3923/rjphyto.2014.64.73

Downloads

Published

2020-03-04

How to Cite

Pezeshki Najafabadi, M., Mohammadi-Sichani, M. ., Kazemi, M. J., Shirsalimian, M. S. ., & Tavakoli, M. . (2020). Antibiofilm Activity of Methanol Extract of Rumex dentatus Against Pseudomonas aeruginosa. Biosis: Biological Systems, 1(1), 25–32. https://doi.org/10.37819/biosis.001.01.0044