Los modelos tam frente a los utaut: estudio comparativo de la producción científica y análisis bibiométrico

Authors

  • María García de Blanes Sebastián Rey Juan Carlos University
  • José Ramón Sarmiento Guede Rey Juan Carlos University
  • Arta Antonovica Rey Juan Carlos University

DOI:

https://doi.org/10.37467/revtechno.v11.4445

Keywords:

Models and frameworks in Technology Adoption, Bibliometrics, TAM, UTAUT 2, Web of Science (WoS), Visualization map, VOSviewer

Abstract

The objective of this research is to review and compare the TAM/TAM2/TAM3 and the UTAUT/UTAUT2 through a bibliometric approach to determine which is the most appropriate model to study new technologies. Data was obtained from the Web of Science database. 2,450 publications were examined, related to TAM/TAM2/TAM3 and 5,145 publications of UTAUT/UTAUT2 during the period 2016-2021. The findings confirm that UTAUT/UTAUT2 is being used by more and more researchers. This review offers a holistic view that will help future researchers to select the most appropriate models in their disciplines of study.

References

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior. Englewood Cliffs, N.J: Prentice-Hall.

Al-Emran, M., & Granić, A. (2021). Is it still valid or outdated? A bibliometric analysis of the technology acceptance model and its applications from 2010 to 2020. In Recent advances in technology acceptance models and theories (pp. 1-12). Springer, Cham. https://doi.org/10.1007/978-3-030-64987-6_1

Alfadda, H. A., & Mahdi, H. S. (2021). Measuring students’ use of zoom application in language course based on the technology acceptance model (TAM/TAM2/TAM3). Journal of Psycholinguistic Research, 50(4), 883-900. https://doi.org/10.1007/s10936-020-09752-1

Alghazi, S. S., Kamsin, A., Almaiah, M. A., Wong, S. Y., & Shuib, L. (2021). For sustainable application of mobile learning: An extended utaut model to examine the effect of technical factors on the usage of mobile devices as a learning tool. Sustainability, 13(4), 1856. https://doi.org/10.3390/su13041856

Alturas, B. (2021). Models of acceptance and use of technology research trends: Literature review and exploratory bibliometric study. In Recent Advances in Technology Acceptance Models and Theories (pp. 13-28). Springer, Cham. https://doi.org/10.1007/978-3-030-64987-6_2

Ardanuy, J. (2012). Breve introducción a la bibliometría. La base de datos scopus y otros e-recursos del CBUES como instrumento de gestión de la actividad investigadora; 1.

Arfi, W. B., Nasr, I. B., Kondrateva, G., & Hikkerova, L. (2021). The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technological Forecasting and Social Change, 167, 120688. https://doi.org/10.1016/j.techfore.2021.120688

Balakrishnan, J., Abed, S. S., & Jones, P. (2022). The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?. Technological Forecasting and Social Change, 180, 121692. https://doi.org/10.1016/j.techfore.2022.121692

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs.

Baynes, T. D. (2019). More than a spasm, less than a sign: Queer masculinity in American visual culture, 1915-1955. [Doctoral Thesis] The University of Western Ontario. Electronic Thesis and Dissertation Repository, 6238. https://ir.lib.uwo.ca/etd/6238

Bradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137, 85-86.

Burch, T.K. (2003) Demography in a new key: a theory of population theory. Demographic Research, 9(11), 263-284.

Caldevilla-Domínguez, D., Barrientos-Báez, A., & Blanco Pérez, M. (2022). The City in Cinema: Referenciality throughout the Filming Stages. Visual Review. International Visual Culture Review, 9(1), 29-47. https://doi.org/10.37467/gkarevvisual.v9.3084

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of informetrics, 5(1), 146-166. https://doi.org/10.1016/j.joi.2010.10.002

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. https://doi.org/10.2307/249008

Davis, F. D., & Warshaw, P. R. (1992). What do intention scales measure? The Journal of General Psychology, 119(4), 391-407. https://doi.org/10.1080/00221309.1992.9921181

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. http://dx.doi.org/10.1287/mnsc.35.8.982

Donthu, N., Kumar Badhotiya, G., Kumar, S., Soni, G. and Pandey, N. (2022), «A retrospective overview of Journal of Enterprise Information Management using bibliometric analysis», Journal of Enterprise Information Management, 35 (2),504-529. https://doi.org/10.1108/JEIM-09-2020-0375

Durieux, V. & Gevenois, P. (2010) Bibliometric indicators: quality measurements of scientific publication,” Radiology, 255 (2), 342–351. http://doi.org/10.1148/radiol.09090626

Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2), 130-132.

Gaviria-Marin, M., Merigó, J. M., & Baier-Fuentes, H. (2019). Knowledge management: A global examination based on bibliometric analysis. Technological Forecasting and Social Change, 140, 194-220. https://doi.org/10.1016/j.techfore.2018.07.006

Iqbal, J., & Sidhu, M. S. (2022). Acceptance of dance training system based on augmented reality and technology acceptance model (TAM/TAM2/TAM3). Virtual Reality, 26(1), 33-54. https://doi.org/10.1007/s10055-021-00529-y

Khan, T., Khan, K. D., Azhar, M. S., Shah, S. N. A., Uddin, M. M., & Khan, T. H. (2021). Mobile health services and the elderly: Assessing the determinants of technology adoption readiness in Pakistan. Journal of Public Affairs, e2685. https://doi.org/10.1002/pa.2685

Kumar, S., Pandey, N., Lim, W. M., Chatterjee, A. N., & Pandey, N. (2021). What do we know about transfer pricing? Insights from bibliometric analysis. Journal of Business Research, 134, 275-287. https://doi.org/10.1016/j.jbusres.2021.05.041

Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington academy of sciences, 16(12), 317-323.

Pattnaik, D., Kumar, S., Burton, B., & Lim, W. M. (2022). Economic Modelling at thirty-five: A retrospective bibliometric survey. Economic Modelling, 107, 105712. https://doi.org/10.1016/j.econmod.2021.105712

Price, D. J. S. (1963). Little science, big science. New York: Columbia University Press.

Puriwat, W., & Tripopsakul, S. (2021). Understanding food delivery mobile application technology adoption: a UTAUT model integrating perceived fear of COVID-19. Emerging Science Journal, 5, 94-104. 10.28991/esj-2021-SPER-08

Rajak, M., & Shaw, K. (2021). An extension of technology acceptance model for mHealth user adoption. Technology in Society, 67, 101800. https://doi.org/10.1016/j.techsoc.2021.101800

Rogers, C. R. (1961). The process equation of psychotherapy. American journal of psychotherapy, 15(1), 27-45. https://doi.org/10.1176/appi.psychotherapy.1961.15.1.27

Rogers, E.M. (1962). Diffusion of innovations. Free Press.

Rueda, G., Gerdsri, P., & Kocaoglu, D. F. (2007, August). Bibliometrics and social network analysis of the nanotechnology field. In PICMET’07-2007 Portland international conference on management of engineering & technology (pp. 2905-2911). IEEE. 10.1109/PICMET.2007.4349633

Song, H., Ruan, W. J., & Jeon, Y. J. J. (2021). An integrated approach to the purchase decision making process of food-delivery apps: Focusing on the TAM/TAM2/TAM3 and AIDA models. International Journal of Hospitality Management, 95, 102943. https://doi.org/10.1016/j.ijhm.2021.102943

Suo, W. J., Goi, C. L., Goi, M. T., & Sim, A. K. (2022). Factors Influencing Behavioural Intention to Adopt the QR-Code Payment: Extending UTAUT2 Model. International Journal of Asian Business and Information Management (IJABIM), 13(2), 1-22. 10.4018/IJABIM.20220701.oa8

Tan, K. S., Chong, S. C., Lin, B., & Eze, U. C. (2009). Internet‐based ICT adoption: evidence from Malaysian SMEs. Industrial Management & Data Systems. 109 (2), 224-244. https://doi.org/10.1108/02635570910930118

Taneja, B., & Bharti, K. (2021). Mapping unified theory of acceptance and use of technology (UTAUT) 2: A taxonomical study using bibliometric visualisation. foresight. https://doi.org/10.1108/FS-08-2020-0079

Taylor, S., & Todd, P.A. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561–570. http://dx.doi.org/10.2307/249633

Thompson, R.L., Higgins, C.A., & Howell, J.M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 124-143. http://dx.doi.org/10.2307/249443

Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J.Y.L., & Xu, X. (2012). Consumer acceptance and use of Information technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412

Wang, J., Li, X., Wang, P., Liu, Q., Deng, Z., & Wang, J. (2021). Research Trend of the Unified Theory of Acceptance and Use of Technology Theory: A Bibliometric Analysis. Sustainability, 14(1), 10. https://doi.org/10.3390/su14010010

White, H. D., & McCain, K. W. (1989). Bibliometrics. Annual review of information science and technology, 24, 119-186.

Xu, Z., Ge, Z., Wang, X., & Skare, M. (2021). Bibliometric analysis of technology adoption literature published from 1997 to 2020. Technological Forecasting and Social Change, 170, 120896. https://doi.org/10.1016/j.techfore.2021.120896

Zhang, X., Chen, H., Wang, W., & Ordóñez de Pablos, P. (2016). What is the role of IT in innovation? A bibliometric analysis of research development in IT innovation. Behaviour & Information Technology, 35(12), 1130-1143. https://doi.org/10.1080/0144929X.2016.1212403

Zhong, Y., Oh, S., & Moon, H. C. (2021). Service transformation under industry 4.0: Investigating acceptance of facial recognition payment through an extended technology acceptance model. Technology in Society, 64, 101515. https://doi.org/10.1016/j.techsoc.2020.101515

Downloads

Published

2022-12-29

How to Cite

García de Blanes Sebastián, M., Sarmiento Guede, J. R., & Antonovica, A. (2022). Los modelos tam frente a los utaut: estudio comparativo de la producción científica y análisis bibiométrico. TECHNO REVIEW. International Technology, Science and Society Review Revista Internacional De Tecnología, Ciencia Y Sociedad, 12(3), 1–27. https://doi.org/10.37467/revtechno.v11.4445