Enhanced Photocatalytic Applications of Chitosan Encapsulated Silver Sulphide Quantum Dots
Abstract
This study explores the synthesis, properties, and applications of chitosan-encapsulated silver sulphide (Ag2S) quantum dots (QDs) for biological applications. The investigation focuses on the fluctuations in the physico-chemical characteristics of chitosan Ag2S QDs, which can be carefully studied due to their environmental activity. X-ray diffraction (XRD) measurements reveal that chitosan-coated Ag2S QDs exhibit higher-intensity peaks. The XRD analysis reports a range of crystallite sizes, with a minimum size of 8 nm and a maximum size of 12 nm. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of chitosan through the detection of functional group peaks. High-resolution transmission electron microscopy (HRTEM) studies indicate that the size of the artificial quantum dots is 6 nm. Energy-dispersive X-ray spectroscopy (EDX) verifies the composition of chitosan-encapsulated Ag2S QDs. Moreover, the chitosan Ag2S quantum dots demonstrate exceptional photocatalytic activity, as evidenced by the degradation of 92% of methylene blue dye within one hour. This research provides valuable insights into the synthesis, properties, and potential applications of chitosan-encapsulated Ag2S quantum dots in diverse fields.
References
- Abdi-Ali, A., Hendiani, S., Mohammadi, P., &Gharavi, S. (2014). Assessment of biofilm formation and resistance to imipenem and ciprofloxacin among clinical isolates of Acinetobacterbaumannii in Tehran. Jundishapur .Journal of microbiology, 7(1).https://doi.org/10.5812/jjm.8606
- Alshehri, M. A., Aziz, A. T., Trivedi, S., &Panneerselvam, C. (2020). Efficacy of chitosan silver nanoparticles from shrimp-shell wastes against major mosquito vectors of public health importance. Green Processing and Synthesis, 9(1), 675-684.
- Andrade, G. R., Nascimento, C. C., Neves, E. C., Santo Barbosa, C. D. A. E., Costa, L. P., Barreto, L. S., &Gimenez, I. F. (2012). One-step preparation of CdSnanocrystals supported on thiolated silica-gel matrix and evaluation of photocatalytic performance. Journal of hazardous materials, 203, 151-157. https://doi.org/10.1016/j.jhazmat.2011.11.086
- Anitha, R., Karthikeyan, B., Pandiyarajan, T., Vignesh, S., James, R. A., Vishwanathan, K., &Murari, B. M. (2011). Antifungal studies on biocompatible polymer encapsulated silver nanoparticles. International Journal of Nanoscience, 10(04n05), 1179-1183. https://doi.org/10.1142/S0219581X11008927
- Anpo, M., Shima, T., Kodama, S., &Kubokawa, Y. (1987). Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. Journal of Physical Chemistry, 91(16), 4305-4310. https://doi.org/10.1021/j100300a021
- Anpo, M., Shima, T., Kodama, S., &Kubokawa, Y. (1987). Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. Journal of Physical Chemistry, 91(16), 4305-4310. https://doi.org/10.1021/j100300a021
- Coia, J. E., Duckworth, G. J., Edwards, D. I., Farrington, M., Fry, C., Humphreys, H., & Joint Working Party of the British Society of Antimicrobial Chemotherapy. (2006). Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. Journal of hospital infection, 63, S1-S44. https://doi.org/10.1016/j.jhin.2006.01.001
- Colmenares, J. C., &Luque, R. (2014). Heterogeneous photocatalyticnanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 43(3), 765-778. https://doi.org/10.1039/C3CS60262A
- Colmenares, J. C., &Luque, R. (2014). Heterogeneous photocatalyticnanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 43(3), 765-778. https://doi.org/10.1039/C3CS60262A
- Dodd, A. C., McKinley, A. J., Saunders, M., & Tsuzuki, T. (2006). Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. Journal of Nanoparticle Research, 8, 43-51. https://doi.org/10.1007/s11051-005-5131-z
- Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusariumoxysporum strains. Journal of nanobiotechnology, 3, 1-7. https://doi.org/10.1186/1477-3155-3-8
- El-Khawaga, A. M., Farrag, A. A., Elsayed, M. A., El-Sayyad, G. S., & El-Batal, A. I. (2021). Antimicrobial and photocatalytic degradation activities of chitosan-coated magnetite nanocomposite. Journal of Cluster Science, 32, 1107-1119. https://doi.org/10.1007/s10876-020-01869-6
- Govindan, S., Nivethaa, E. A. K., Saravanan, R., Narayanan, V., & Stephen, A. (2012). Synthesis and characterization of chitosan–silver nanocomposite, Appl. https://doi.org/10.1007/s13204-012-0109-5
- Habiba, K., Bracho-Rincon, D. P., Gonzalez-Feliciano, J. A., Villalobos-Santos, J. C., Makarov, V. I., Ortiz, D., … &Morell, G. (2015). Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Applied Materials Today,1(2), 80-87. https://doi.org/10.1016/j.apmt.2015.10.001
- Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release, 156(2), 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002
- Iijima, M., &Kamiya, H. (2009). Surface modification for improving the stability of nanoparticles in liquid media. KONA Powder and Particle Journal, 27, 119-129. https://doi.org/10.14356/kona.2009012
- Jose, A., Devi, K. S., Pinheiro, D., &Narayana, S. L. (2018). Electrochemical synthesis, photodegradation and antibacterial properties of PEG capped zinc oxide nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 187, 25-34. https://doi.org/10.1016/j.jphotobiol.2018.07.022
- Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 42(18), 4591-4602.https://doi.org/10.1016/j.watres.2008.08.015
- Liu, S. Q. (2012). Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environmental chemistry letters, 10, 209-216. https://doi.org/10.1007/s10311-011-0348-9
- Ma, Q., Hu, X., Liu, N., Sharma, A., Zhang, C., Kawazoe, N., & Yang, Y. (2020). Polyethylene glycol (PEG)-modified Ag/Ag2O/Ag3PO4/Bi2WO6 photocatalyst film with enhanced efficiency and stability under solar light. Journal of colloid and interface science, 569, 101-113. https://doi.org/10.1016/j.jcis.2020.02.064
- Magesh, G., Bhoopathi, G., Nithya, N., Arun, A. P., & Ranjith Kumar, E. (2018). Effect of biopolymer blend matrix on structural, optical and biological properties of chitosan–agar blend ZnO nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 28, 1528-1539. https://link.springer.com/article/10.1007/s10904-018-0848-1
- Manikandan, A., & Sathiyabama, M. (2015). Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. Journal of Nanomedicine & Nanotechnology, 6(1), 1. http://dx.doi.org/10.4172/2157-7439.1000251
- Mills, A., Davies, R. H., &Worsley, D. (1993). Water purification by semiconductor photocatalysis. Chemical Society Reviews, 22(6), 417-425. https://doi.org/10.1039/CS9932200417
- Muniz, F. T. L., Miranda, M. R., Morilla dos Santos, C., & Sasaki, J. M. (2016). The Scherrer equation and the dynamical theory of X-ray diffraction. ActaCrystallographica Section A: Foundations and Advances, 72(3), 385-390. https://doi.org/10.1107/S205327331600365X
- Orooji, Y., Ghanbari, M., Amiri, O., &Salavati-Niasari, M. (2020). Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable Photocatalytic performance through sunlight and antimicrobial activity. Journal of Hazardous Materials, 389, 122079. https://doi.org/10.1016/j.jhazmat.2020.122079
- Pant, B., Park, M., & Park, S. J. (2019). Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities. Coatings, 9(10), 613. https://doi.org/10.3390/coatings9100613
- Raghuram, H. S., Pradeep, S., Dash, S., Chowdhury, R., &Mazumder, S. (2016). Chitosan-encapsulated ZnS: M (M: Fe 3+ or Mn 2+) quantum dots for fluorescent labelling of sulphate-reducing bacteria. Bulletin of Materials Science, 39, 405-413. https://doi.org/10.1007/s12034-016-1178-y
- Raza, Z. A., Khalil, S., Ayub, A., & Banat, I. M. (2020). Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate research, 492, 108004.https://doi.org/10.1016/j.carres.2020.108004
- Sharma, A., Sharma, R., Bhatia, N., & Kumari, A. (2021). Review on synthesis, characterization and applications of silver sulphide quantum dots. Journal of Materials Science Research and Reviews, 7(3), 42-58. http://journal.pustakalibrary.com/id/eprint/166
- Sharma, A., Sharma, R., Thakur, N., Sharma, P., & Kumari, A. (2023). Silver sulphide (Ag2S) quantum dots synthesized from aqueous route with enhanced antimicrobial and dye degradation capabilities. Physica E: Low-dimensional Systems and Nanostructures, 115730. https://doi.org/10.1016/j.physe.2023.115730
- Tan, L., Wan, A., & Li, H. (2013). Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. Langmuir, 29(48), 15032-15042 (dx.doi.org/10.1021/la403028j. http://dx.doi.org/10.1021/la403028j
- Zhang, G., Li, J., Shen, A., & Hu, J. (2015). Synthesis of size-tunable chitosan encapsulated gold–silver nanoflowers and their application in SERS imaging of living cells. Physical Chemistry Chemical Physics, 17(33), 21261-21267. https://doi.org/10.1039/C4CP05343E
- Kusiak-Nejman, E., Sienkiewicz, A., Wanag, A., Rokicka-Konieczna, P., &Morawski, A. W. (2021). The role of adsorption in the photocatalytic decomposition of dyes on APTES-Modified TiO2 nanomaterials. Catalysts, 11(2), 172. https://doi.org/10.3390/catal11020172
- Dutta, V., Sudhaik, A., Raizada, P., Singh, A., Ahamad, T., Thakur, S.,& Singh, P. (2023). Tailoring S-scheme-based carbon nanotubes (CNTs) mediated Ag-CuBi2O4/Bi2S3 nanomaterials for photocatalytic dyes degradation in the aqueous system. Journal of Materials Science & Technology. https://doi.org/10.1016/j.jmst.2023.03.037
- Sudhaik, A., Raizada, P., Ahamad, T., Alshehri, S. M., Nguyen, V. H., Van Le, Q.,& Singh, P. (2022). Recent advances in cellulose supported photocatalysis for pollutant mitigation: A review. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2022.11.241
- Hasija, V., Raizada, P., Sudhaik, A., Sharma, K., Kumar, A., Singh, P., & Thakur, V. K. (2019). Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Applied Materials Today, 15, 494-524. https://doi.org/10.1016/j.apmt.2019.04.003
- Kumar, Y., Kumar, R., Raizada, P., Khan, A. A. P., Van Le, Q., Singh, P., & Nguyen, V. H. (2021). Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and perspectives. Journal of Materials Science & Technology, 87.https://doi.org/10.1016/j.jmst.2021.01.051
- Sudhaik, A., Raizada, P., Khan, A. A. P., Singh, A., & Singh, P. (2022). Graphitic carbon nitride-based upconversionphotocatalyst for hydrogen production and water purification. Nanofabrication, 7, 280-313. https://doi.org/10.37819/nanofab.007.189
- Barragan, J. A., Aleman Castro, J. R., Peregrina-Lucano, A. A., Sánchez-Amaya, M., Rivero, E. P., &Larios-Durán, E. R. (2021). Leaching of metals from e-waste: from its thermodynamic analysis and design to its implementation and optimization. ACS omega, 6(18), 12063-12071. https://doi.org/10.1021/acsomega.1c00724
- AbdElkodous, M., El-Sayyad, G. S., Youssry, S. M., Nada, H. G., Gobara, M., Elsayed, M. A., ...& Matsuda, A. (2020). Carbon-dot-loaded CoxNi1− xFe2O4; x= 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Scientific Reports, 10(1), 11534. http://doi.org/10.1038/s 41598-020-68173-1
- Vasiljevic, Z.Z., Dojcinovic, M.P., Vujancevic, J.D., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N.B., Stojadinovic, S., Brankovic, G.O. and Nikolic, M.V., 2020. Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method. Royal Society open science, 7(9), p.200708. https://doi.org/10.1098/rsos.200708
How to Cite
Article Details
Most Read This Month
License
Copyright (c) 2023 Ambalika Sharma, Rahul Sharma, Asha Kumari
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.