Skip to main content Skip to main navigation menu Skip to site footer

CO2 electro/photocatalytic reduction using nanostructured ZnO and silicon-based materials: A short review

Abstract

Reducing CO2 net emissions is one of the most pressing goals in tackling the current global warming emergency. Therefore, the development of carbon recycling strategies has resulted in the application of heterogeneous catalysts toward the electro/photocatalysis reduction of CO2 into hydrocarbons with potential reusability. Their morphology is among the properties that affect the performance and selectivity of catalysts towards this reaction. Nanostructuring methods offer popular strategies for catalytic applications since they allow an increase in the area/volume ratio and versatile control over surface physicochemical properties. In this review, we summarize studies that report the use of versatile synthesis techniques for obtaining nanostructured metallic and semiconductor materials with application in the electro/photocatalytic reduction of CO2. Enhancing mechanisms to the catalytic CO2 reduction yield, such as improved charge carrier separation efficiency, defect engineering, active site concentration, and localized plasmonic behavior, are described in conjunction with the control over the morphologies of the nanostructured platforms. Special attention is given to ZnO and silicon-based matrices as candidates for developing abundant and non-toxic catalytic materials. Therefore, this work represents a guide to the efforts made to design electro/photocatalytic systems that can contribute significantly to this field.

Section

References

  1. Ali, A., Biswas, M. R. U. D., & Oh, W. C. (2018). Novel and simple process for the photocatalytic reduction of CO2 with ternary Bi2O3–graphene–ZnO nanocomposite. Journal of Materials Science: Materials in Electronics, 29(12), 10222–10233. https://doi.org/10.1007/s10854-018-9073-5
  2. Basumallick, S. (2020). Electro-reduction of CO2 onto ZnO–Cu nano composite catalyst. Applied Nanoscience (Switzerland), 10(1), 159–163. https://doi.org/10.1007/s13204-019-01080-8
  3. Bocarsly, A. B., Bookbinder, D. C., Dominey, R. N., Lewis, N. S., & Wrighton, M. S. (1980). Photoreduction at Illuminated p-Type Semiconducting Silicon Photoelectrodes. Evidence for Fermi Level Pinning. Journal of the American Chemical Society, 102(11), 3683–3688. https://doi.org/10.1021/ja00531a003
  4. Bouras, P., Stathatos, E., & Lianos, P. (2007). Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B: Environmental, 73(1–2), 51–59. https://doi.org/10.1016/j.apcatb.2006.06.007
  5. Cai, W., Shi, Y., Zhao, Y., Chen, M., Zhong, Q., & Bu, Y. (2018). The solvent-driven formation of multi-morphological Ag-CeO2 plasmonic photocatalysts with enhanced visible-light photocatalytic reduction of CO2. RSC Advances, 8(71), 40731–40739. https://doi.org/10.1039/c8ra08938h
  6. Chen, P., Zhang, Y., Zhou, Y., & Dong, F. (2021). Photoelectrocatalytic carbon dioxide reduction: Fundamental, advances and challenges. Nano Materials Science, 3(4), 344–367. https://doi.org/10.1016/j.nanoms.2021.05.003
  7. Christopher, P., Xin, H., & Linic, S. (2011). Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 3(6), 467–472. https://doi.org/10.1038/nchem.1032
  8. Dasgupta, N. P., Liu, C., Andrews, S., Prinz, F. B., & Yang, P. (2013). Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. Journal of the American Chemical Society, 135(35), 12932–12935. https://doi.org/10.1021/ja405680p
  9. de Brito, J. F., Araujo, A. R., Rajeshwar, K., & Zanoni, M. V. B. (2015). Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects. Chemical Engineering Journal, 264, 302–309. https://doi.org/10.1016/j.cej.2014.11.081
  10. Deng, H., Xu, F., Cheng, B., Yu, J., & Ho, W. (2020). Photocatalytic CO 2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst . Nanoscale, 12(13), 7206–7213. https://doi.org/10.1039/c9nr10451h
  11. Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., & He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146. https://doi.org/10.1016/j.watres.2015.04.038
  12. Feng, X., Zou, H., Zheng, R., Wei, W., Wang, R., Zou, W., Lim, G., Hong, J., Duan, L., & Chen, H. (2022). Bi2O3/BiO2Nanoheterojunction for Highly Efficient Electrocatalytic CO2Reduction to Formate. Nano Letters, 22(4), 1656–1664. https://doi.org/10.1021/acs.nanolett.1c04683
  13. Fox, M. A., & Dulay, M. T. (1993). Heterogeneous Photocatalysis. Chemical Reviews, 93(1), 341–357. https://doi.org/10.1021/cr00017a016
  14. Galdámez-Martínez, A., Bai, Y., Santana, G., Sprick, R. S., & Dutt, A. (2020). Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: Role of structural properties. International Journal of Hydrogen Energy, 45(xxxx), 1–10. https://doi.org/10.1016/j.ijhydene.2020.08.247
  15. Gao, T., Wen, X., Xie, T., Han, N., Sun, K., Han, L., Wang, H., Zhang, Y., Kuang, Y., & Sun, X. (2019). Morphology effects of bismuth catalysts on electroreduction of carbon dioxide into formate. Electrochimica Acta, 305, 388–393. https://doi.org/10.1016/j.electacta.2019.03.066
  16. Gao, Z. H., Wei, K., Wu, T., Dong, J., Jiang, D. E., Sun, S., & Wang, L. S. (2022). A Heteroleptic Gold Hydride Nanocluster for Efficient and Selective Electrocatalytic Reduction of CO2to CO. Journal of the American Chemical Society, 144(12), 5258–5262. https://doi.org/10.1021/jacs.2c00725
  17. Geng, Z., Kong, X., Chen, W., Su, H., Liu, Y., Cai, F., Wang, G., & Zeng, J. (2018). Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO. Angewandte Chemie - International Edition, 57(21), 6054–6059. https://doi.org/10.1002/anie.201711255
  18. Ghahramanifard, F., Rouhollahi, A., & Fazlolahzadeh, O. (2018). Synthesis of n-type Cu-doped ZnO Nanorods onto FTO by Electrodeposition Method and Study its Electrocatalytic Properties toward CO2 Reduction. Analytical & Bioanalytical Electrochemistry, 10(3), 362–371.
  19. Gondal, M. A., Ali, M., Chang, X. F., Shen, K., Xu, Q. Y., & Yamani, Z. H. (2012). Pulsed laser-induced photocatalytic reduction of greenhouse gas CO 2 into methanol: A value-added hydrocarbon product over SiC. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 47(11), 1571–1576. https://doi.org/10.1080/10934529.2012.680419
  20. Guo, F., Yang, S., Liu, Y., Wang, P., Huang, J., & Sun, W. Y. (2019). Size Engineering of Metal-Organic Framework MIL-101(Cr)-Ag Hybrids for Photocatalytic CO2 Reduction [Research-article]. ACS Catalysis, 9(9), 8464–8470. https://doi.org/10.1021/acscatal.9b02126
  21. Guo, Q., Zhang, Q., Wang, H., Liu, Z., & Zhao, Z. (2017). Unraveling the role of surface property in the photoreduction performance of CO2 and H2O catalyzed by the modified ZnO. Molecular Catalysis, 436, 19–28. https://doi.org/10.1016/j.mcat.2017.04.014
  22. Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie - International Edition, 52(29), 7372–7408. https://doi.org/10.1002/anie.201207199
  23. Han, N., Ding, P., He, L., Li, Y., & Li, Y. (2020). Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate. Advanced Energy Materials, 10(11), 1–19. https://doi.org/10.1002/aenm.201902338
  24. He, D., Jin, T., Li, W., Pantovich, S., Wang, D., & Li, G. (2016). Photoelectrochemical CO 2 Reduction by a Molecular Cobalt ( II ) Catalyst on Planar and Nanostructured Si Surfaces. Chemistry - A European Journal, 22(37), 13064–13067.
  25. He, J., Johnson, N. J. J., Huang, A., & Berlinguette, C. P. (2018). Electrocatalytic Alloys for CO2 Reduction. ChemSusChem, 11(1), 48–57. https://doi.org/10.1002/cssc.201701825
  26. Hoch, L. B., Brien, P. G. O., Jelle, A., Sandhel, A., Perovic, D. D., Mims, C. A., & Ozin, A. (2016). Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/ Photochemical Approach to Solar Fuels. https://doi.org/10.1021/acsnano.6b05416
  27. Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. In Nature (Vol. 277, Issue 5698, pp. 637–638). https://doi.org/10.1038/277637a0
  28. Iqbal, M., Wang, Y., Hu, H., He, M., Hassan Shah, A., Lin, L., Li, P., Shao, K., Reda Woldu, A., & He, T. (2018). Cu 2 O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO 2 photoreduction. Applied Surface Science, 443, 209–216. https://doi.org/10.1016/j.apsusc.2018.02.162
  29. Jayah, N. A., Yahaya, H., Mahmood, M. R., Terasako, T., Yasui, K., & Hashim, A. M. (2015). High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature. Nanoscale Research Letters, 10(1), 1–10. https://doi.org/10.1186/s11671-014-0715-0
  30. Jiang, K., Wang, H., Cai, W. Bin, & Wang, H. (2017). Li Electrochemical Tuning of Metal Oxide for Highly Selective CO2 Reduction. ACS Nano, 11(6), 6451–6458. https://doi.org/10.1021/acsnano.7b03029
  31. Jiang, X., Cai, F., Gao, D., Dong, J., Miao, S., Wang, G., & Bao, X. (2016). Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide. Electrochemistry Communications, 68, 67–70. https://doi.org/10.1016/j.elecom.2016.05.003
  32. Jin, T., He, D., Li, W., Iii, J. S., & Pantovich, S. A. (2016). CO 2 reduction with Re ( I )– NHC compounds : driving selective catalysis with a silicon nanowire. Chemical Communications, 52, 14258–14261. https://doi.org/10.1039/C6CC08240H
  33. Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89(3–4), 494–502. https://doi.org/10.1016/j.apcatb.2009.01.010
  34. Kočí, Kamila, Praus, P., Edelmannová, M., Ambrožová, N., Troppová, I., Fridrichová, D., Słowik, G., & Ryczkowski, J. (2017). Photocatalytic reduction of CO2 over CdS, ZnS and core/shell CdS/ZnS nanoparticles deposited on montmorillonite. Journal of Nanoscience and Nanotechnology, 17(6), 4041–4047. https://doi.org/10.1166/jnn.2017.13093
  35. Kumar, B., Smieja, J. M., & Kubiak, C. P. (2010). Photoreduction of CO2 on p-type silicon using Re(bipy-Bu t)(CO)3Cl: Photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. Journal of Physical Chemistry C, 114(33), 14220–14223. https://doi.org/10.1021/jp105171b
  36. Li, D., Kassymova, M., Cai, X., Zang, S. Q., & Jiang, H. L. (2020). Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 412, 213262. https://doi.org/10.1016/j.ccr.2020.213262
  37. Li, G., Sun, Y., Sun, S., Chen, W., Zheng, J., Chen, F., Sun, Z., & Sun, W. (2020). The effects of morphologies on photoreduction of carbon dioxide to gaseous fuel over tin disulfide under visible light irradiation. Advanced Powder Technology, 31(6), 2505–2512. https://doi.org/10.1016/j.apt.2020.04.014
  38. Li, H., Lei, Y., Huang, Y., Fang, Y., Xu, Y., Zhu, L., & Li, X. (2011). Photocatalytic reduction of carbon dioxide to methanol by Cu 2O/SiC nanocrystallite under visible light irradiation. Journal of Natural Gas Chemistry, 20(2), 145–150. https://doi.org/10.1016/S1003-9953(10)60166-1
  39. Li, M., Zhang, S., Li, L., Han, J., Zhu, X., Ge, Q., & Wang, H. (2020). Construction of Highly Active and Selective Polydopamine Modified Hollow ZnO/Co3O4p-n Heterojunction Catalyst for Photocatalytic CO2Reduction. ACS Sustainable Chemistry and Engineering, 8(30), 11465–11476. https://doi.org/10.1021/acssuschemeng.0c04829
  40. Li, N., Chen, X., Wang, J., Liang, X., Ma, L., Jing, X., Chen, D. L., & Li, Z. (2022). ZnSe Nanorods-CsSnCl3 Perovskite Heterojunction Composite for Photocatalytic CO2 Reduction. ACS Nano, 16(2), 3332–3340. https://doi.org/10.1021/acsnano.1c11442
  41. Li, P., Zhu, S., Hu, H., Guo, L., & He, T. (2019). Influence of defects in porous ZnO nanoplates on CO2 photoreduction. Catalysis Today, 335, 300–305. https://doi.org/10.1016/j.cattod.2018.11.068
  42. Li, Z., He, D., Yan, X., Dai, S., Younan, S., Ke, Z., Pan, X., Xiao, X., Wu, H., & Gu, J. (2020). Size-Dependent Nickel-Based Electrocatalysts for Selective CO2 Reduction. Angewandte Chemie - International Edition, 59(42), 18572–18577. https://doi.org/10.1002/anie.202000318
  43. Liao, F., Fan, X., Shi, H., Li, Q., Ma, M., Zhu, W., Lin, H., Li, Y., & Shao, M. (2022). Boosting electrocatalytic selectivity in carbon dioxide reduction: The fundamental role of dispersing gold nanoparticles on silicon nanowires. Chinese Chemical Letters, 33(9), 4380–4384. https://doi.org/10.1016/j.cclet.2021.12.034
  44. Liao, Y., Hu, Z., Gu, Q., & Xue, C. (2015). Amine-functionalized ZnO nanosheets for efficient CO2 capture and photoreduction. Molecules, 20(10), 18847–18855. https://doi.org/10.3390/molecules201018847
  45. Lin, L.-Y. Y., Kavadiya, S., Karakocak, B. B., Nie, Y., Raliya, R., Wang, S. T., Berezin, M. Y., & Biswas, P. (2018). ZnO1-x/carbon dots composite hollow spheres: Facile aerosol synthesis and superior CO2 photoreduction under UV, visible and near-infrared irradiation. Applied Catalysis B: Environmental, 230, 36–48. https://doi.org/10.1016/j.apcatb.2018.02.018
  46. Liu, C., Dasgupta, N. P., & Yang, P. (2014). Semiconductor nanowires for artificial photosynthesis. Chemistry of Materials, 26(1), 415–422. https://doi.org/10.1021/cm4023198
  47. Liu, L., & Jin, F. (2017). Hybrid ZnO nanorod arrays@graphene through a facile room-temperature bipolar solution route towards advanced CO2 photocatalytic reduction properties. Ceramics International, 43(1), 860–865. https://doi.org/10.1016/j.ceramint.2016.09.112
  48. Liu, X., Ye, L., Liu, S., Li, Y., & Ji, X. (2016). Photocatalytic Reduction of CO2 by ZnO Micro/nanomaterials with Different Morphologies and Ratios of {0001} Facets. Scientific Reports, 6(December), 38474. https://doi.org/10.1038/srep38474
  49. Liu, Y., Ji, G., Dastageer, M. A., Zhu, L., Wang, J., Zhang, B., Chang, X., & Gondal, M. A. (2014). Highly-active direct Z-scheme Si/TiO2 photocatalyst for boosted CO2 reduction into value-added methanol. RSC Advances, 4(100), 56961–56969. https://doi.org/10.1039/c4ra10670a
  50. Loutzenhiser, P. G., Elena Gálvez, M., Hischier, I., Graf, A., & Steinfeld, A. (2010). CO2 splitting in an aerosol flow reactor via the two-step Zn/ZnO solar thermochemical cycle. Chemical Engineering Science, 65(5), 1855–1864. https://doi.org/10.1016/j.ces.2009.11.025
  51. Lv, C., Chen, Z., Chen, Z., Zhang, B., Qin, Y., Huang, Z., & Zhang, C. (2015). Silicon nanowires loaded with iron phosphide for effective solar-driven hydrogen production. Journal of Materials Chemistry A, 3(34), 17669–17675. https://doi.org/10.1039/c5ta03438h
  52. Ma, W., Xie, M., Xie, S., Wei, L., Cai, Y., Zhang, Q., & Wang, Y. (2021). Nickel and indium core-shell co-catalysts loaded silicon nanowire arrays for efficient photoelectrocatalytic reduction of CO2 to formate. Journal of Energy Chemistry, 54, 422–428. https://doi.org/10.1016/j.jechem.2020.06.023
  53. Merino-Garcia, I., Albo, J., Solla-Gullón, J., Montiel, V., & Irabien, A. (2019). Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. Journal of CO2 Utilization, 31(November 2018), 135–142. https://doi.org/10.1016/j.jcou.2019.03.002
  54. Miao, Z., Liu, W., Zhao, Y., Wang, F., Meng, J., Liang, M., Wu, X., Zhao, J., Zhuo, S., & Zhou, J. (2020). Zn-Modified Co@N-C composites with adjusted Co particle size as catalysts for the efficient electroreduction of CO2. Catalysis Science and Technology, 10(4), 967–977. https://doi.org/10.1039/c9cy02203a
  55. Núñez, J., De La Peña O’Shea, V. A., Jana, P., Coronado, J. M., & Serrano, D. P. (2013). Effect of copper on the performance of ZnO and ZnO1-xN x oxides as CO2 photoreduction catalysts. Catalysis Today, 209, 21–27. https://doi.org/10.1016/j.cattod.2012.12.022
  56. O’Brien, P. G., Sandhel, A., Wood, T. E., Jelle, A. A., Hoch, L. B., Perovic, D. D., Mims, C. A., & Ozin, G. A. (2014). Photomethanation of gaseous CO2 over ru/silicon nanowire catalysts with visible and near-infrared photons. Advanced Science, 1(1), 1–7. https://doi.org/10.1002/advs.201400001
  57. Peng, F., Wang, J., Ge, G., He, T., Cao, L., He, Y., Ma, H., & Sun, S. (2013). Photochemical reduction of CO2 catalyzed by silicon nanocrystals produced by high energy ball milling. Materials Letters, 92, 65–67. https://doi.org/10.1016/j.matlet.2012.10.059
  58. Qiao, Y., Lai, W., Huang, K., Yu, T., Wang, Q., Gao, L., Yang, Z., Ma, Z., Sun, T., Liu, M., Lian, C., & Huang, H. (2022). Engineering the Local Microenvironment over Bi Nanosheets for Highly Selective Electrocatalytic Conversion of CO2 to HCOOH in Strong Acid. ACS Catalysis, 12(4), 2357–2364. https://doi.org/10.1021/acscatal.1c05135
  59. Rong, W., Zou, H., Zang, W., Xi, S., Wei, S., Long, B., Hu, J., Ji, Y., & Duan, L. (2021). Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters during CO/CO2 Electroreduction. Angewandte Chemie - International Edition, 60(1), 466–472. https://doi.org/10.1002/anie.202011836
  60. Scirè, S., Crisafulli, C., Maggiore, R., Minicò, S., & Galvagno, S. (1998). Influence of the support on CO2 methanation over Ru catalysts: An FT-IR study. Catalysis Letters, 51(1), 41–45. https://doi.org/10.1023/A:1019028816154
  61. Shehzad, N., Tahir, M., Johari, K., Murugesan, T., & Hussain, M. (2018). A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization, 26(November 2017), 98–122. https://doi.org/10.1016/j.jcou.2018.04.026
  62. Shioya, Y., Ikeue, K., Ogawa, M., & Anpo, M. (2003). Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO 2 with H2O. Applied Catalysis A: General, 254(2), 251–259. https://doi.org/10.1016/S0926-860X(03)00487-3
  63. Torralba-Penalver, E., Luo, Y., Compain, J.-D., Chardon-Noblat, S., & Fabre, B. (2015). Selective Catalytic Electroreduction of CO 2 at Silicon Nanowires ( SiNWs ) Photocathodes Using Non-Noble Metal-Based Manganese Carbonyl Bipyridyl Molecular Catalysts in Solution and Grafted onto SiNWs. ACS Catalysis, 5(10), 6138–6147. https://doi.org/10.1021/acscatal.5b01546
  64. Wang, C., Thompson, R. L., Ohodnicki, P., Baltrus, J., & Matranga, C. (2011). Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry, 21(35), 13452–13457. https://doi.org/10.1039/c1jm12367j
  65. Wang, J., Han, B., Nie, R., Xu, Y., Yu, X., Dong, Y., Wang, J., & Jing, H. (2018). Photoelectrocatalytic Reduction of CO2 to Chemicals via ZnO@Nickel Foam: Controlling C–C Coupling by Ligand or Morphology. Topics in Catalysis, 61(15–17), 1563–1573. https://doi.org/10.1007/s11244-018-1018-y
  66. Wang, W.-N., Soulis, J., Yang, Y. J., & Biswas, P. (2014). Comparison of CO2 Photoreduction Systems: A Review. Aerosol and Air Quality Research, 14(2), 533–549. https://doi.org/10.4209/aaqr.2013.09.0283
  67. Wang, X., Li, Q., Zhou, C., Cao, Z., & Zhang, R. (2019). ZnO rod/reduced graphene oxide sensitized by α-Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. Journal of Colloid and Interface Science, 554, 335–343. https://doi.org/10.1016/j.jcis.2019.07.014
  68. Wang, Yichao, Ren, B., Zhen Ou, J., Xu, K., Yang, C., Li, Y., & Zhang, H. (2021). Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Science Bulletin, 66(12), 1228–1252. https://doi.org/10.1016/j.scib.2021.02.007
  69. Wang, Yuanxing, Zhu, Y., & Niu, C. (2020). Surface and length effects for aqueous electrochemical reduction of CO2 as studied over copper nanowire arrays. Journal of Physics and Chemistry of Solids, 144(January), 109507. https://doi.org/10.1016/j.jpcs.2020.109507
  70. Watanabe, M. (1992). Photosynthesis of methanol and methane from CO2 and H2O molecules on a ZnO surface. Surface Science, 279(3), 236–242. https://doi.org/10.1016/0039-6028(92)90546-I
  71. Wei, B., Xiong, Y., Zhang, Z., Hao, J., Li, L., & Shi, W. (2021). Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Applied Catalysis B: Environmental, 283, 119646. https://doi.org/10.1016/j.apcatb.2020.119646
  72. Woldu, A. R., Huang, Z., Zhao, P., Hu, L., & Astruc, D. (2022). Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 454, 214340. https://doi.org/10.1016/j.ccr.2021.214340
  73. Wong, A. P. Y., Sun, W., Qian, C., Jelle, A. A., Jia, J., Zheng, Z., Dong, Y., & Ozin, G. A. (2017). Tailoring CO2 Reduction with Doped Silicon Nanocrystals. Advanced Sustainable Systems, 1(11), 1–7. https://doi.org/10.1002/adsu.201700118
  74. Xu, T., Hu, J., Yang, Y., Que, W., Yin, X., Wu, H., & Chen, L. (2018). Solid-state synthesis of ZnO nanorods coupled with reduced graphene oxide for photocatalytic application. Journal of Materials Science: Materials in Electronics, 29(6), 4888–4894. https://doi.org/10.1007/s10854-017-8447-4
  75. Xuan, X., Tu, S., Yu, H., Du, X., Zhao, Y., He, J., Dong, H., Zhang, X., & Huang, H. (2019). Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles. Applied Catalysis B: Environmental, 255(May), 117768. https://doi.org/10.1016/j.apcatb.2019.117768
  76. Yamamura, S., Kojima, H., Iyoda, J., & Kawai, W. (1988). Photocatalytic reduction of carbon dioxide with metal-loaded SiC powders. Journal of Electroanalytical Chemistry, 247(1–2), 333–337. https://doi.org/10.1016/0022-0728(88)80154-2
  77. Yang, G., Qiu, P., Xiong, J., Zhu, X., & Cheng, G. (2022). Facilely anchoring Cu2O nanoparticles on mesoporous TiO2 nanorods for enhanced photocatalytic CO2 reduction through efficient charge transfer. Chinese Chemical Letters, 33(8), 3709–3712. https://doi.org/10.1016/j.cclet.2021.10.047
  78. Yang, P., Yan, R., & Fardy, M. (2010). Semiconductor nanowire: Whats Next? Nano Letters, 10(5), 1529–1536. https://doi.org/10.1021/nl100665r
  79. Yin, H. Y., Zheng, Y. F., & Song, X. C. (2019). Synthesis and enhanced visible light photocatalytic CO2 reduction of BiPO4-BiOBrxI1−x p-n heterojunctions with adjustable energy band. RSC Advances, 9(20), 11005–11012. https://doi.org/10.1039/c9ra01416k
  80. Zhang, Lei, Zhao, Z. J., & Gong, J. (2017). Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms. Angewandte Chemie - International Edition, 56(38), 11326–11353. https://doi.org/10.1002/anie.201612214
  81. Zhang, Lixin, Li, N., Jiu, H., Qi, G., & Huang, Y. (2015). ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceramics International, 41(5), 6256–6262. https://doi.org/10.1016/j.ceramint.2015.01.044
  82. Zhang, X., Wang, P., Lv, X., Niu, X., Lin, X., Zhong, S., Wang, D., Lin, H., Chen, J., & Bai, S. (2022). Stacking Engineering of Semiconductor Heterojunctions on Hollow Carbon Spheres for Boosting Photocatalytic CO2 Reduction. ACS Catalysis, 12(4), 2569–2580. https://doi.org/10.1021/acscatal.1c05401
  83. Zhao, Z., Fan, J., Wang, J., & Li, R. (2012). Effect of heating temperature on photocatalytic reduction of CO 2 by N-TiO 2 nanotube catalyst. Catalysis Communications, 21, 32–37. https://doi.org/10.1016/j.catcom.2012.01.022
  84. Zheng, Y., Yin, X., & Zhang, S. (2018). Activity Enhancement in Photocatalytic Reduction of CO2 over Nano-ZnO Anchored on Graphene. Water, Air, and Soil Pollution, 229(8). https://doi.org/10.1007/s11270-018-3877-z
  85. Zhu, W., Zhang, L., Yang, P., Chang, X., Dong, H., Li, A., Hu, C., Huang, Z., Zhao, Z. J., & Gong, J. (2018). Morphological and Compositional Design of Pd–Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO2 Electroreduction. Small, 14(7), 1–7. https://doi.org/10.1002/smll.201703314

How to Cite

Galdámez-Martínez, A. ., & Dutt, A. . (2023). CO2 electro/photocatalytic reduction using nanostructured ZnO and silicon-based materials: A short review. Nanofabrication, 8. https://doi.org/10.37819/nanofab.8.306

HTML
277

Total
501 1

Share

Search Panel

Andrés Galdámez-Martínez
Google Scholar
Pubmed
JDMFS Journal


Ateet Dutt
Google Scholar
Pubmed
JDMFS Journal


Downloads

Article Details

DOI: https://doi.org/10.37819/nanofab.8.306

Published: 2023-05-26

Most Read This Month

License

Copyright (c) 2023 Andrés Galdámez-Martínez, Ateet Dutt

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.