Skip to main content Skip to main navigation menu Skip to site footer

Nanomaterials based sustainable bioenergy production systems: Current trends and future prospects

  • Saroj Bala
  • Minaxi Sharma
  • Kavya Dashora
  • Saba Siddiqui
  • Deepti Diwan
  • Manikant Tripathi

Abstract

The global energy crisis affects all of us. With a growing global population and finite fossil fuel supplies, we must find new energy sources. Alternative energy sources must be prioritized. Biofuels like biodiesel, biohydrogen, biomethanol, and bioethanol have come a long way in recent decades. These alternative fuels are from low-cost, renewable sources like algal, microbial, and plant biomass. Several governments, including India, are improving their renewable energy production capabilities. The main obstacles to rapid biofuel adoption are time and cost. For biofuel to truly become a viable alternative to fossil fuels, nanotechnology has recently provided the much-needed impetus. Nanomaterials' unique structural behavior, such as small size (nanoscale size), has increased their use in biofuel production. It improves efficiency and reduces the time required to convert waste into biofuels. This review addresses the latest information on various types of nanoparticles, and challenges faced and the future prospects of emerging applications of nanoparticles in biofuel production.

Section

References

  1. Alvarez, L.H. & Cervantes, F.J. (2012). Assessing the impact of alumina nanoparticles in an anaerobic consortium: methanogenic and humus reducing activity. Applied Microbiology and Biotechnology, 95(5), 1323-1331.
  2. Arya, I., Poona, A., Dikshit, P.K., Pandit, S., Kumar, J., Singh, H.N., Jha, N.K., Rudayni, H.A., Chaudhary, A.A. & Kumar, S. (2021). Current Trends and Future Prospects of Nanotechnology in Biofuel Production. Catalysts, 11(11), 1308.
  3. Asikin-Mijan, N., Mohd Sidek, H., Alsultan, A.G., Azman, N.A., Adzahar, N.A. & Ong, H.C. (2021). Single-atom catalysts: a review of synthesis strategies and their potential for biofuel production. Catalysts, 11, 1470.
  4. Baniamerian, H., Isfahani, P.G., Tsapekos, P., Alvarado-Morales, M., Shahrokhi, M., Vossoughi, M. & Angelidaki, I. (2019). Application of nano-structured materials in anaerobic digestion: Current status and perspectives. Chemosphere, 229, 188-199.
  5. Beig, B., Riaz, M., Naqvi, S.R., Hassan, M., Zheng, Z., Karimi, K., Pugazhendhi, A., Atabani, A.E. & Chi, N.T.L. (2021). Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel, 287, 119670.
  6. Bezerra, R.M., Neto, D.M.A., Galvão, W.S., Rios, N.S., Carvalho, A.C.L.D.M., Correa, M.A., Bohn, F., Fernandez-Lafuente, R., Fechine, P.B., de Mattos, M.C. & dos Santos, J.C. (2017). Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochemical Engineering Journal, 125, 104-115.
  7. Bharath, G., Rambabu, K., Hai, A., Banat, F., Taher, H., Schmidt, J.E. & Show, P.L. (2020). Catalytic hydrodeoxygenation of biomass-derived pyrolysis oil over alloyed bimetallic Ni3Fe nanocatalyst for high-grade biofuel production. Energy Conversion and Management, 213, 112859.
  8. Bhutto, A.W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A.A., Karim, S. & Yu, G. (2017). Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 122, 724-745.
  9. Bidir, M.G., Millerjothi, N.K., Adaramola, M.S. & Hagos, F.Y. (2021). The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review. Energy Reports, 7, 3614-3627.
  10. Bravo-Suárez, J.J., Chaudhari, R.V. & Subramaniam, B. (2013). Design of heterogeneous catalysts for fuels and chemicals processing: An overview. Novel Materials for Catalysis and Fuels Processing, pp. 3-68.
  11. Cai, J., Zhao, Y., Fan, J., Li, F., Feng, C., Guan, Y., Wang, R. & Tang, N. (2019). Photosynthetic bacteria improved hydrogen yield of combined dark-and photo-fermentation. Journal of Biotechnology, 302, 18-25.
  12. Chingakham, C., David, A. & Sajith, V. (2019). Fe3O4 nanoparticles impregnated egg shell as a novel catalyst for enhanced biodiesel production. Chinese Journal of Chemical Engineering, 27(11), 2835-2843.
  13. Cong, W.J., Nanda, S., Li, H., Fang, Z., Dalai, A.K. & Kozinski, J.A. (2021). Metal–organic framework-based functional catalytic materials for biodiesel production: a review. Green Chemistry, 23(7), 2595-2618.
  14. Degirmenbasi, N., Coskun, S., Boz, N. & Kalyon, D.M. (2015). Biodiesel synthesis from canola oil via heterogeneous catalysis using functionalized CaO nanoparticles. Fuel, 153, 620-627.
  15. Dolly, S., Pandey, A., Pandey, B.K. & Gopal, R. (2015). Process parameter optimization and enhancement of photo-biohydrogen production by mixed culture of Rhodobacter sphaeroides NMBL-02 and Escherichia coli NMBL-04 using Fe-nanoparticle. International Journal of Hydrogen Energy,40(46), 6010-16020.
  16. Du, Y., Schuur, B., Kersten, S.R. & Brilman, D.W. (2015). Opportunities for switchable solvents for lipid extraction from wet algal biomass: An energy evaluation. Algal Research, 11, 271-283.
  17. Elreedy, A., Ibrahim, E., Hassan, N., El-Dissouky, A., Fujii, M., Yoshimura, C. & Tawfik, A. (2017). Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convervation Management,40, 133-144.
  18. Gong, E., Ali, S., Hiragond, C.B., Kim, H.S., Powar, N.S., Kim, D., Kim, H. & In, S.I. (2022). Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy & Environmental Science, 11, 1-58.
  19. Gundoshmian, T.M., Heidari-Maleni, A. & Jahanbakhshi, A. (2021). Evaluation of performance and emission characteristics of a CI engine using functional multi-walled carbon nanotubes (MWCNTs-COOH) additives in biodiesel-diesel blends. Fuel, 287, 119525.
  20. Haque, S., Singh, R., Pal, D.B., Faidah, H., Ashgar, S.S., Areeshi, M.Y., Almalki, A.H., Verma, B., Srivastava, N. & Gupta, V.K. (2022). Thermophilic biohydrogen production strategy using agro industrial wastes: Current update, challenges, and sustainable solutions, Chemosphere 307, 136120
  21. IEA (2018). World Energy Outlook, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2018.
  22. IEA (2019). World Energy Outlook, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2019.
  23. IEA (2020). World Energy Outlook, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2020.
  24. IEA (2021). World Energy Outlook, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2021.
  25. Justine, M., Prabu, H.J., Johnson, I., Raj, D.M.A., Sundaram, S.J. & Kaviyarasu, K. (2021). Synthesis and characterizations studies of ZnO and ZnO-SiO2 nanocomposite for biodiesel applications. Materials Today: Proceedings, 36, 440-446.
  26. Kadam, R. & Panwar, N.L. (2017). Recent advancement in biogas enrichment and its applications. Renewable and Sustainable Energy Reviews, 73, 892-903.
  27. Karthikeyan, M., Nambirajan, S., Baskar, G. & Renganathan S. (2020). Cassia javanica biodiesel blends with SiO2 nanoparticles for IC Engine applications. 11, 404-410.
  28. Khan, I., Hou, F., Zakari, A. & Tawiah, V.K. (2021). The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries. Energy, 222, 119935.
  29. Khan, Y., Sadia, H., Ali Shah, S.Z., Khan, M.N., Shah, A.A., Ullah, N., Ullah, M.F., Bibi, H., Bafakeeh, O.T., Khedher, N.B. & Eldin, S.M. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts, 12(11), 1386.
  30. Lafarga, T. (2021). Production and consumption of oils and oilseeds, In T. Lafarga, G. Bobo, I Aguilo-Aguayo (Eds.), Oil and Oilseed Processing: Opportunities and Challenges (pp. 1-21), John Wiley and Sons, 2021:1-21. https://doi.org/10.1002/9781119575313.ch1
  31. Lee, D.J., Jung, S., Jeong, K.H., Lee, D.H., Lee, S.H., Park, Y.K. & Kwon, E.E. (2020). Catalytic pyrolysis of cow manure over a Ni/SiO2 catalyst using CO2 as a reaction medium. Energy, 195, 117077.
  32. Liu, Y., Wang, Q., Zhang, Y. & Ni, B.J. (2015). Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate. Scientific Reports, 5(1), 1-6.
  33. Lu, J., Chen, Z., Ma, Z., Pan, F., Curtiss, L.A. & Amine, K. (2016). The role of nanotechnology in the development of battery materials for electric vehicles. Nature Nanotechnology, 11, 1031–1038. https://doi.org/10.1038/nnano.2016.207.
  34. Lupoi, J.S. & Smith, E.A. (2011). Evaluation of nanoparticle‐immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnology and Bioengineering, 108(12), 2835-2843.
  35. Manikandan, S., Subbaiya, R., Biruntha, M., Krishnan, R.Y., Muthusamy, G. & Karmegam, N. (2022). Recent development patterns, utilization and prospective of biofuel production: Emerging nanotechnological intervention for environmental sustainability–A review. Fuel, 314, 122757.
  36. Marcelino, L. V., Pinto, A. L., & Marques, C. A. (2020). Scientific specialties in Green Chemistry. Iberoamerican Journal of Science Measurement and Communication, 1(1), 005. https://doi.org/10.47909/ijsmc.06
  37. Mirzayanti, Y.W., Roesyadi, A. & Prajitno, D.H. (2019). Triglyceride of Kapok seed Oil to biofuel over a synthesised Cu-Mo supported HZSM-5 catalyst. In IOP Conference Series: Materials Science and Engineering, 462, 012023.
  38. Mishra, A., Bhatt, R., Bajpai, J. & Bajpai, A.K. (2021). Nanomaterials based biofuel cells: a review. International Journal of Hydrogen Energy, 46(36), 19085-19105.
  39. Mu, H., Chen, Y., & Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology, 102(22), 10305-10311.
  40. Myint, M. (2015). Theoretical and experimental study of bimetallic catalysts in heterogeneous catalysis and electrocatalysis for energy applications. University of Delaware.
  41. Pandey, M.D., 2022. Perspective of nanomaterials for sustainable biofuel and bioenergy production. Materials Letters, 313, 131686.
  42. Pathak, N., Singh, P., Singh, P.K., Sharma, S., Singh, R.P., Gupta, A., Mishra, R., Mishra, V.K. & Tripathi, M. (2022b). Biopolymeric nanoparticles based effective delivery of bioactive compounds toward the sustainable development of anticancerous therapeutics. Frontiers in Nutrition, 15, 9, 963413. doi: 10.3389/fnut.2022.963413.
  43. Pathak, N., Singh, S., Singh, P., Singh, P.K., Singh, R., Bala, S., Thirumalesh, B.V., Gaur, R. & Tripathi, M. (2022a) Valorization of jackfruit waste into value added products and their potential applications. Frontiers in Nutrition, 9, 1061098. doi: 10.3389/fnut.2022.1061098.
  44. Rana, A.K., Guleria, S., Gupta, V.K., Thakur, V.K. (2023). Cellulosic pine needles-based biorefinery for a circular bioeconomy. Bioresource Technology, 367, 128255.
  45. Rana, A.K., Gupta, V.K. & Thakur, VK. (2021). Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination, 520, 115359
  46. Raschke, A., Hernandez-Suarez, J.S., Nejadhashemi, A.P. & Deb, K. (2021). Multidimensional aspects of sustainable biofuel feedstock production. Sustainability, 13(3), 1424.
  47. Rodríguez-Couto S. (2019). Green nanotechnology for biofuel production. In Sustainable Approaches for Biofuels Production Technologies, Springer, Cham., pp. 73-82.
  48. Saleem, M. (2022). Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon, pp. 08905.
  49. Sateesh, K.A., Yaliwal, V.S., Soudagar, M.E.M., Banapurmath, N.R., Fayaz, H., Safaei, M.R., Elfasakhany, A. & EL-Seesy, A.I. (2021). Utilization of biodiesel/Al2O3 nanoparticles for combustion behavior enhancement of a diesel engine operated on dual fuel mode. Journal of Thermal Analysis and Calorimetry, pp.1-15.
  50. Seelert, T., Ghosh, D. & Yargeau, V. (2015). Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Applied Microbiology and Biotechnology, 99(9), 4107-4116.
  51. Sekoai, P.T., Ouma, C.N.M., Du Preez, S.P., Modisha, P., Engelbrecht, N., Bessarabov, D.G. & Ghimire, A. (2019). Application of nanoparticles in biofuels: an overview. Fuel, 237, 380-397.
  52. Shakeel, N., Imran Ahamed, M., Kanchi, S. & Abbas Kashmery, H. (2020). Green synthesis of ZnO nanoparticles decorated on polyindole functionalized-MCNTs and used as anode material for enzymatic biofuel cell applications. Scientific Reports, 10(1), 1-10.
  53. Sharma, S., Kundu, A., Basu, S., Shetti, N.P. & Aminabhavi, T.M. (2020). Sustainable environmental management and related biofuel technologies. Journal of Environmental Management, 273, 111096.
  54. Siddiki, S.Y.A., Mofijur, M., Kumar, P.S., Ahmed, S.F., Inayat, A., Kusumo, F., Badruddin, I.A., Khan, T.Y., Nghiem, L.D., Ong, H.C. & Mahlia, T.M.I. (2022). Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 307, 121782.
  55. Srivastava, M., Srivastava, N., Saeed, M., Mishra, P.K., Saeed, A., Gupta, V.K. & Malhotra, B.D. (2021). Bioinspired synthesis of iron-based nanomaterials for application in biofuels production: A new in-sight. Renewable and Sustainable Energy Reviews, 147, 111206.
  56. Srivastava, N., Srivastava, M., Mishra, P.K., Kausar, M.A., Saeed, M., Gupta, V.K., Singh, R. & Ramteke, P.W. (2020). Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresource Technology, 307, 123094
  57. Srivastava, N., Mohammad, A., Srivastava, M., Syed, A., Elgorban, A.M., Pal, D.B., Mishra, P.K., Yoon, T. & Gupta, V.K. (2021). Biogenic enabled in-vitro synthesis of nickel cobaltite nanoparticle and its application in single stage hybrid biohydrogen production. Bioresource Technology, 339, 125606.
  58. Srivastava, N., Srivastava, K.R., Bantun, F., Mohammad, A., Singh, R., Pal, D.B., Mishra, P.K., Haque, S. & Gupta, V.K. (2022a). Improved production of biogas via microbial digestion of pressmud using CuO/Cu2O based nanocatalyst prepared from pressmud and sugarcane bagasse waste. Bioresource Technology, 362, 127814.
  59. Srivastava, N., Srivastava, M., Malhotra, B.D., Gupta, V.K., Ramteke, P.W., Silva, R.N., Shukla, P., Dubey, K.K. & Mishra, P.K. (2019). Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnology Advances, 37, 107384
  60. Srivastava, N., Srivastava, M., Singh, R., Syed, A., Pal, D.B., Elgorban, A.M., Kushwaha, D., Mishra, P.K. & Gupta, V.K. (2022b). Co-fermentation of residual algal biomass and glucose under the influence of Fe3O4 nanoparticles to enhance biohydrogen production under dark mode. Bioresource Technology, 342, 126034
  61. Su, L., Shi, X., Guo, G., Zhao, A. & Zhao, Y. (2013). Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production. Journal of Material Cycles and Waste Management, 15(4), pp.461-468.
  62. Sudheer, S., Bai, R.G., Muthoosamy, K., Tuvikene, R., Gupta, V.K. & Manickam, S. (2021). Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: A critical review. Environ Research, 204, 111963
  63. Suzuki, S., & Mori, S. (2018). Synthesis of carbon nanotubes from biofuel as a carbon source through a diesel engine. Diamond and Related Materials, 82, 79-86.
  64. Tahvildari, K., Anaraki, Y.N., Fazaeli, R., Mirpanji, S. & Delrish, E. (2015). The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. Journal of Environmental Health Science and Engineering, 13(1), 1-9.
  65. Taib, N.A.A.B., Rahman, M.R., Matin, M.M., Uddin, J., Bakri, M.K.B. & Khan, A. (2021). A Review on Carbon Nanotubes (CNT): Structure, Synthesis, Purification and Properties for Modern day Applications. 1, pp. 1-22.
  66. Tang, J., Yan, X., Engelbrekt, C., Ulstrup, J., Magner, E., Xiao, X. & Zhang, J. (2020). Development of graphene-based enzymatic biofuel cells: A minireview. Bioelectrochemistry, 134, 107537.
  67. Thakur, A., Kumar, A., Kaya, S., Vo, D.V.N. and Sharma, A., 2022. Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: a review. Fuel, 312, 122934.
  68. Thakur, S., Sharma, B., Thakur, A., Gupta, V.K., Alsanie, W.F., Makatsoris, C. & Thakur, V.K. (2022). Synthesis and characterisation of zinc oxide modified biorenewable polysaccharides based sustainable hydrogel nanocomposite for Hg2+ ion removal: towards a circular bioeconomy. Bioresource Technology, 348, 126708.
  69. Tripathi, M, Kumar, S., Kumar, A., Tripathi, P. & Kumar, S. (2018). Agro-nanotechnology: a future technology for sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 7, 196-200.
  70. Tripathi, M., Kumar, A. & Kumar, S. (2017). Characterization of silver nanoparticle synthesizing bacteria and its possible use in treatment of multi drug resistant isolate. Frontiers in Environmental Microbiology, 3, 62-67.
  71. Usmani, Z., Sharma, M., Diwan, D., Tripathi, M., Whale, E., Jayakody LN., Moreau, B., Thakur, V.K., Tuohy, M. & Gupta, V.K. (2022) Valorization of sugar beet pulp to value-added products: A review. Bioresource Technology, 346, 126580.
  72. Vasistha, S., Khanra, A., Clifford, M. & Rai, M.P. (2021) Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renewable and Sustainable Energy Reviews, 137, 110498.
  73. Verma, M.L. (2020). Nanobiotechnology for Sustainable Bioenergy and Biofuel Production. CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9780429023194
  74. Wen, L., Wang, Y., Lu, D., Hu, S. & Han, H. (2010). Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel, 89(9), 2267-2271.
  75. Wimonsong, P., Nitisoravut, R., Llorca, J. (2014). Application of Fe–Zn–Mg–Al–O hydrotalcites supported Au as active nano-catalyst for fermentative hydrogen production. Chemical Engineering Journal, 253, 148-154.
  76. Xie, W. & Wang, J. (2014). Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy & Fuels, 28(4), 2624-2631.
  77. Zhang, J., Sewell, C.D., Huang, H. & Lin, Z. (2021). Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization. Advanced Energy Materials, 11(47), 2102767.
  78. Zhou, X., Wang, Y., Gong, C., Liu, B. & Wei, G. (2020). Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review. Chemical Engineering Journal, 402, 126189.

How to Cite

Bala, S. ., Sharma, M. ., Dashora, K. ., Siddiqui, S. ., Diwan, D. ., & Tripathi, M. . (2022). Nanomaterials based sustainable bioenergy production systems: Current trends and future prospects . Nanofabrication, 7, 314–324. https://doi.org/10.37819/nanofab.007.253

HTML
303

Total
241

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Saroj Bala, Minaxi Sharma, Kavya Dashora, Saba Siddiqui, Deepti Diwan, Manikant Tripathi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.