Skip to main content Skip to main navigation menu Skip to site footer

Synthesis and applications of carbon porous nano-materials for environmental remediation

  • Komal Beniwal
  • Harjot Kaur
  • Adesh Kumar Saini
  • Samarjeet Singh Siwal ,

Abstract

Carbon-based porous materials are widely used as adsorbents due to their high adsorption capacity and unique properties such as large pore size, sizeable area-to-volume ratio, high thermal & electrical conductivity etc., to remove pollutant from water and thus helps in water remediation. Water contamination poses severe impacts on humans as well as on marine life. In this review, we studied porous carbon materials such as graphene, carbon nanotubes and activated carbon, including their synthesis, properties and wide applications in water remediation. Absorbent materials at different scales for these applications are auspicious for environmental remediation. This review also provides future endeavors of carbon porous materials towards sustainable techniques for an eco-friendly environment.

Section

References

  1. Abualnaja, K. M., Alprol, A. E., Ashour, M., & Mansour, A. T. (2021). Influencing Multi-Walled Carbon Nanotubes for the Removal of Ismate Violet 2R Dye from Wastewater: Isotherm, Kinetics, and Thermodynamic Studies. Applied Sciences, 11(11). doi:10.3390/app11114786
  2. Acuña, V., Ginebreda, A., Mor, J. R., Petrovic, M., Sabater, S., Sumpter, J., & Barceló, D. (2015). Balancing the health benefits and environmental risks of pharmaceuticals: Diclofenac as an example. Environment International, 85, 327-333. doi:https://doi.org/10.1016/j.envint.2015.09.023
  3. Adedeji, A. N., Ahmed, F. F., & Adam, S. U. (2021). Examining the dynamic effect of COVID-19 pandemic on dwindling oil prices using structural vector autoregressive model. Energy, 230, 120813. doi:https://doi.org/10.1016/j.energy.2021.120813
  4. Aigbe, U. O., & Osibote, O. A. (2021). Carbon derived nanomaterials for the sorption of heavy metals from aqueous solution: A review. Environmental Nanotechnology, Monitoring & Management, 16, 100578. doi:https://doi.org/10.1016/j.enmm.2021.100578
  5. Ali, G. A. M., Thalji, M. R., Soh, W. C., Algarni, H., & Chong, K. F. (2020). One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. Journal of Solid State Electrochemistry, 24(1), 25-34. doi:10.1007/s10008-019-04449-5
  6. Ali, I., Asim, M., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170-183. doi:https://doi.org/10.1016/j.jenvman.2012.08.028
  7. Almoisheer, N., Alseroury, F. A., Kumar, R., Almeelbi, T., & Barakat, M. A. (2019). Synthesis of Graphene Oxide/Silica/Carbon Nanotubes Composite for Removal of Dyes from Wastewater. Earth Systems and Environment, 3(3), 651-659. doi:10.1007/s41748-019-00109-w
  8. Arunkumar, T., Karthikeyan, R., Ram Subramani, R., Viswanathan, K., & Anish, M. (2020). Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). International Journal of Ambient Energy, 41(4), 452-456. doi:10.1080/01430750.2018.1472657
  9. Baby, R., Saifullah, B., & Hussein, M. Z. (2019). Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Research Letters, 14(1), 341. doi:10.1186/s11671-019-3167-8
  10. Banerjee, P., Das, P., Zaman, A., & Das, P. (2016). Application of graphene oxide nanoplatelets for adsorption of Ibuprofen from aqueous solutions: Evaluation of process kinetics and thermodynamics. Process Safety and Environmental Protection, 101, 45-53. doi:https://doi.org/10.1016/j.psep.2016.01.021
  11. Banerjee, P., Sau, S., Das, P., & Mukhopadhayay, A. (2015). Optimization and modelling of synthetic azo dye wastewater treatment using Graphene oxide nanoplatelets: Characterization toxicity evaluation and optimization using Artificial Neural Network. Ecotoxicology and Environmental Safety, 119, 47-57. doi:https://doi.org/10.1016/j.ecoenv.2015.04.022
  12. Bassyouni, M., Mansi, A. E., Elgabry, A., Ibrahim, B. A., Kassem, O. A., & Alhebeshy, R. (2019). Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNTs’ potential and current challenges. Applied Physics A, 126(1), 38. doi:10.1007/s00339-019-3211-7
  13. ben Mosbah, M., Mechi, L., Khiari, R., & Moussaoui, Y. (2020). Current State of Porous Carbon for Wastewater Treatment. Processes, 8(12). doi:10.3390/pr8121651
  14. Braghiroli, F. L., Bouafif, H., Neculita, C. M., & Koubaa, A. (2020). Influence of Pyro-Gasification and Activation Conditions on the Porosity of Activated Biochars: A Literature Review. Waste and Biomass Valorization, 11(9), 5079-5098. doi:10.1007/s12649-019-00797-5
  15. Brookstein, D. S. (2009). Factors Associated with Textile Pattern Dermatitis Caused by Contact Allergy to Dyes, Finishes, Foams, and Preservatives. Dermatologic Clinics, 27(3), 309-322. doi:https://doi.org/10.1016/j.det.2009.05.001
  16. Chrzanowska, J., Hoffman, J., Małolepszy, A., Mazurkiewicz, M., Kowalewski, T. A., Szymanski, Z., & Stobinski, L. (2015). Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. physica status solidi (b), 252(8), 1860-1867. doi:https://doi.org/10.1002/pssb.201451614
  17. de Araújo, C. M. B., Oliveira do Nascimento, G. F., Bezerra da Costa, G. R., Baptisttella, A. M. S., Fraga, T. J. M., de Assis Filho, R. B., . . . da Motta Sobrinho, M. A. (2020). Real textile wastewater treatment using nano graphene-based materials: Optimum pH, dosage, and kinetics for colour and turbidity removal. The Canadian Journal of Chemical Engineering, 98(6), 1429-1440. doi:https://doi.org/10.1002/cjce.23712
  18. Demon, S. Z. N., Kamisan, A. I., Abdullah, N., Noor, S. A. M., Khim, O. K., Kasim, N. A. M., . . . Halim, N. A. J. S. M. (2020). Graphene-based materials in gas sensor applications: A review. Sensors and Materials, 32(2), 759-777.
  19. Dervishi, E., Li, Z., Xu, Y., Saini, V., Biris, A. R., Lupu, D., & Biris, A. S. (2009). Carbon Nanotubes: Synthesis, Properties, and Applications. Particulate Science and Technology, 27(2), 107-125. doi:10.1080/02726350902775962
  20. Edwards, R. S., & Coleman, K. S. (2013). Graphene synthesis: relationship to applications. Nanoscale, 5(1), 38-51. doi:10.1039/C2NR32629A
  21. Faruk, O., & Sain, M. (2015). Lignin in polymer composites: William Andrew.
  22. Gan, G., Li, X., Fan, S., Wang, L., Qin, M., Yin, Z., & Chen, G. (2019). Carbon Aerogels for Environmental Clean-Up. European Journal of Inorganic Chemistry, 2019(27), 3126-3141. doi:https://doi.org/10.1002/ejic.201801512
  23. Gazzard, B. G., Langley, P. G., Weston, M. J., Dunlop, E. H., & Williams, R. (1974). Polymer Coating of Activated Charcoal and its Effects on Biocompatibility and Paracetamol Binding. Clinical Science and Molecular Medicine, 47(2), 97-104. doi:10.1042/cs0470097
  24. Gil, A., Santamaría, L., & Korili, S. A. (2018). Removal of Caffeine and Diclofenac from Aqueous Solution by Adsorption on Multiwalled Carbon Nanotubes. Colloid and Interface Science Communications, 22, 25-28. doi:https://doi.org/10.1016/j.colcom.2017.11.007
  25. Gupta, N., Gupta, S. M., & Sharma, S. K. (2019). Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters, 29(5), 419-447. doi:10.1007/s42823-019-00068-2
  26. Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research, 45(6), 2207-2212. doi:https://doi.org/10.1016/j.watres.2011.01.012
  27. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., . . . Gun'Ko, Y. K. J. N. n. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. 3(9), 563-568.
  28. Hiew, B. Y. Z., Lee, L. Y., Lee, X. J., Gan, S., Thangalazhy-Gopakumar, S., Lim, S. S., . . . Yang, T. C.-K. (2019). Adsorptive removal of diclofenac by graphene oxide: Optimization, equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 98, 150-162. doi:https://doi.org/10.1016/j.jtice.2018.07.034
  29. Hirose, J., Kondo, F., Nakano, T., Kobayashi, T., Hiro, N., Ando, Y., . . . Sano, K. (2005). Inactivation of antineoplastics in clinical wastewater by electrolysis. Chemosphere, 60(8), 1018-1024. doi:https://doi.org/10.1016/j.chemosphere.2005.01.024
  30. Htwe, Y. Z. N., Chow, W. S., Suda, Y., Thant, A. A., & Mariatti, M. (2019). Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Applied Surface Science, 469, 951-961. doi:https://doi.org/10.1016/j.apsusc.2018.11.029
  31. Hussain, N., Bilal, M., & M. N. Iqbal, H. (2021). Carbon-based nanomaterials with multipurpose attributes for water treatment: Greening the 21st-century nanostructure materials deployment. Biomaterials and Polymers Horizon, 1(1), 48-58. doi:10.37819/bph.001.01.0131
  32. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol, 7(2), 60-72. doi:10.2478/intox-2014-0009
  33. Karamveer, S., Thakur, V. K., & Siwal, S. S. (2022). Synthesis and overview of carbon-based materials for high performance energy storage application: A review. Materials Today: Proceedings, 56, 9-17. doi:https://doi.org/10.1016/j.matpr.2021.11.369
  34. Kaur, H., Sheoran, K., Siwal, S. S., Saini, R. V., Saini, A. K., Alsanie, W. F., & Thakur, V. K. (2022). Role of Silver Nanoparticle-Doped 2-Aminodiphenylamine Polymeric Material in the Detection of Dopamine (DA) with Uric Acid Interference. Materials, 15(4). doi:10.3390/ma15041308
  35. Kaur, H., Siwal, S. S., Bishnoi, P., Rarotra, S., Vo, D.-V. N., Gupta, V. K., . . . Vijay, K. (2022). Towards the impact of COVID-19 on the Environment, Education, and Economy (EEE). Biomaterials and Polymers Horizon, 1(2). doi:10.37819/bph.001.02.0213
  36. Kaur, H., Siwal, S. S., Chauhan, G., Saini, A. K., Kumari, A., & Thakur, V. K. (2022). Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere, 135182. doi:https://doi.org/10.1016/j.chemosphere.2022.135182
  37. Kaur, H., Siwal, S. S., Saini, R. V., Singh, N., & Thakur, V. K. (2022). Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS Nanoscience Au. doi:10.1021/acsnanoscienceau.2c00039
  38. Kaur, H., Thakur, V. K., & Siwal, S. S. (2021). Recent advancements in graphdiyne-based nano-materials for biomedical applications. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2021.12.355
  39. Kaur, J., Gill, G. S., & Jeet, K. (2019). Chapter 5 - Applications of Carbon Nanotubes in Drug Delivery: A Comprehensive Review. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, & S. Thomas (Eds.), Characterization and Biology of Nanomaterials for Drug Delivery (pp. 113-135): Elsevier.
  40. Khurana, I., Saxena, A., Bharti, Khurana, J. M., & Rai, P. K. (2017). Removal of Dyes Using Graphene-Based Composites: a Review. Water, Air, & Soil Pollution, 228(5), 180. doi:10.1007/s11270-017-3361-1
  41. Kookana, R. S., Williams, M., Boxall, A. B. A., Larsson, D. G. J., Gaw, S., Choi, K., . . . Carriquiriborde, P. (2014). Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130586. doi:10.1098/rstb.2013.0586
  42. Kumar, A., Sood, A., & Soo Han, S. (2021). Potential of magnetic nano cellulose in biomedical applications: Recent Advances. Biomaterials and Polymers Horizon, 1(1), 32-47. doi:10.37819/bph.001.01.0133
  43. Kumar Mishra, R., Goel, S., & Yazdani Nezhad, H. (2021). Computational prediction of electrical and thermal properties of graphene and BaTiO3 reinforced epoxy nanocomposites. Biomaterials and Polymers Horizon, 1(1), 1-14. doi:10.37819/bph.001.01.0132
  44. Kumar, N., Salehiyan, R., Chauke, V., Botlhoko, O. J., Setshedi, K., Scriba, M., . . . Ray, S. S. J. F. (2021). Top-down synthesis of graphene: A comprehensive review. 27, 100224.
  45. Kumar, V., Kumar, A., Chhatra, R. K., & Le, D.-J. (2022). Studies on high performance rubber composites by incorporating titanium dioxide particles with different surface area and particle size. Nanofabrication, 7. doi:10.37819/nanofab.007.200
  46. Lee, J., Kim, J., & Hyeon, T. (2006). Recent Progress in the Synthesis of Porous Carbon Materials. Advanced Materials, 18(16), 2073-2094. doi:https://doi.org/10.1002/adma.200501576
  47. Lee, Y.-C., & Yang, J.-W. (2012). Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. Journal of Industrial and Engineering Chemistry, 18(3), 1178-1185. doi:https://doi.org/10.1016/j.jiec.2012.01.005
  48. Liao, Q., Sun, J., & Gao, L. (2008). The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(2), 160-165. doi:https://doi.org/10.1016/j.colsurfa.2007.06.045
  49. Limousy, L., Ghouma, I., Ouederni, A., & Jeguirim, M. (2017). Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environmental Science and Pollution Research, 24(11), 9993-10004. doi:10.1007/s11356-016-7404-8
  50. Liu, F., Wang, C., Sui, X., Riaz, M. A., Xu, M., Wei, L., & Chen, Y. J. C. E. (2019). Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. 1(2), 173-199.
  51. Mandeep, Gulati, A., & Kakkar, R. (2020). Graphene-based adsorbents for water remediation by removal of organic pollutants: Theoretical and experimental insights. Chemical Engineering Research and Design, 153, 21-36. doi:https://doi.org/10.1016/j.cherd.2019.10.013
  52. Manocha, S. M. (2003). Porous carbons. Sadhana, 28(1), 335-348. doi:10.1007/BF02717142
  53. Miao, F., Majee, S., Song, M., Zhao, J., Zhang, S.-L., & Zhang, Z.-B. (2016). Inkjet printing of electrochemically-exfoliated graphene nano-platelets. Synthetic Metals, 220, 318-322. doi:https://doi.org/10.1016/j.synthmet.2016.06.029
  54. Mishra, K., Devi, N., Siwal, S. S., Zhang, Q., Alsanie, W. F., Scarpa, F., & Thakur, V. K. (2022). Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. Advanced Science, n/a(n/a), 2202187. doi:https://doi.org/10.1002/advs.202202187
  55. Mishra, K., Kumar Thakur, V., & Singh Siwal, S. (2022). Graphitic carbon nitride based palladium nanoparticles: A homemade anode electrode catalyst for efficient direct methanol fuel cells application. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2021.12.342
  56. Mondal, S., Sinha, K., Aikat, K., & Halder, G. (2015). Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung bean husk. Journal of Environmental Chemical Engineering, 3(1), 187-195. doi:https://doi.org/10.1016/j.jece.2014.11.021
  57. Munuera, J. M., Paredes, J. I., Villar-Rodil, S., Ayán-Varela, M., Pagán, A., Aznar-Cervantes, S. D., . . . Tascón, J. M. D. (2015). High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types. Carbon, 94, 729-739. doi:https://doi.org/10.1016/j.carbon.2015.07.053
  58. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896
  59. Obodo, R. M., Ahmad, I., & Ezema, F. I. (2019). Introductory chapter: graphene and its applications. In Graphene and Its Derivatives-Synthesis and Applications: Intechopen.
  60. Odetoye, T., Bakar, M. A., & Titiloye, J. J. N. J. o. T. D. (2019). Pyrolysis and characterization of Jatropha curcas shell and seed coat. Nigerian Journal of Technological Development, 16(2), 71-77.
  61. Parvez, K., Li, R., Puniredd, S. R., Hernandez, Y., Hinkel, F., Wang, S., . . . Müllen, K. (2013). Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics. ACS Nano, 7(4), 3598-3606. doi:10.1021/nn400576v
  62. Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N., & Ismadji, S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research, 43(9), 2419-2430. doi:https://doi.org/10.1016/j.watres.2009.02.039
  63. Rashidi, N. A., & Yusup, S. (2017). A review on recent technological advancement in the activated carbon production from oil palm wastes. Chemical Engineering Journal, 314, 277-290. doi:https://doi.org/10.1016/j.cej.2016.11.059
  64. Robati, D., Mirza, B., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chemical Engineering Journal, 284, 687-697. doi:https://doi.org/10.1016/j.cej.2015.08.131
  65. Rosman, N., Salleh, W. N. W., Mohamed, M. A., Jaafar, J., Ismail, A. F., & Harun, Z. (2018). Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. Journal of Colloid and Interface Science, 532, 236-260. doi:https://doi.org/10.1016/j.jcis.2018.07.118
  66. Rudakiya, D., Patel, Y., Chhaya, U., & Gupte, A. (2019). Carbon Nanotubes in Agriculture: Production, Potential, and Prospects. In D. G. Panpatte & Y. K. Jhala (Eds.), Nanotechnology for Agriculture: Advances for Sustainable Agriculture (pp. 121-130). Singapore: Springer Singapore.
  67. Sagara, T., Kurumi, S., & Suzuki, K. (2014). Growth of linear Ni-filled carbon nanotubes by local arc discharge in liquid ethanol. Applied Surface Science, 292, 39-43. doi:https://doi.org/10.1016/j.apsusc.2013.11.056
  68. Saifuddin, N., Raziah, A. Z., & Junizah, A. R. (2013). Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. Journal of Chemistry, 2013, 676815. doi:10.1155/2013/676815
  69. Sangon, S., Hunt, A. J., Attard, T. M., Mengchang, P., Ngernyen, Y., & Supanchaiyamat, N. (2018). Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. Journal of Cleaner Production, 172, 1128-1139. doi:https://doi.org/10.1016/j.jclepro.2017.10.210
  70. Sayari, A. (1996). Catalysis by Crystalline Mesoporous Molecular Sieves. Chemistry of Materials, 8(8), 1840-1852. doi:10.1021/cm950585+
  71. Sevilla, M., Ferrero, G. A., & Fuertes, A. B. (2016). Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. Chemistry – A European Journal, 22(48), 17351-17358. doi:https://doi.org/10.1002/chem.201603321
  72. Shams, S. S., Zhang, R., & Zhu, J. J. M. S. P. (2015). Graphene synthesis: a Review. 33(3), 566-578.
  73. Shan, D., Deng, S., Zhao, T., Yu, G., Winglee, J., & Wiesner, M. R. (2016). Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. Chemical Engineering Journal, 294, 353-361. doi:https://doi.org/10.1016/j.cej.2016.02.118
  74. Sharif, F., Zeraati, A. S., Ganjeh-Anzabi, P., Yasri, N., Perez-Page, M., Holmes, S. M., . . . Roberts, E. P. L. (2020). Synthesis of a high-temperature stable electrochemically exfoliated graphene. Carbon, 157, 681-692. doi:https://doi.org/10.1016/j.carbon.2019.10.042
  75. Sheoran, K., Kaur, H., Siwal, S. S., Saini, A. K., Vo, D.-V. N., & Thakur, V. K. (2022). Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. Chemosphere, 299, 134364. doi:https://doi.org/10.1016/j.chemosphere.2022.134364
  76. Sheoran, K., Siwal, S. S., Kapoor, D., Singh, N., Saini, A. K., Alsanie, W. F., & Thakur, V. K. (2022). Air Pollutants Removal Using Biofiltration Technique: A Challenge at the Frontiers of Sustainable Environment. ACS Engineering Au, 2(5), 378-396. doi:10.1021/acsengineeringau.2c00020
  77. Shi, Z., Lian, Y., Liao, F. H., Zhou, X., Gu, Z., Zhang, Y., . . . Zhang, S.-L. (2000). Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. Journal of Physics and Chemistry of Solids, 61(7), 1031-1036. doi:https://doi.org/10.1016/S0022-3697(99)00358-3
  78. Singh, C., Shaffer, M. S. P., & Windle, A. H. (2003). Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon, 41(2), 359-368. doi:https://doi.org/10.1016/S0008-6223(02)00314-7
  79. Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian J Pharmacol, 43(3), 246-253. doi:10.4103/0253-7613.81505
  80. Siwal, S., Devi, N., Perla, V., Barik, R., Ghosh, S., & Mallick, K. (2018). The influencing role of oxophilicity and surface area of the catalyst for electrochemical methanol oxidation reaction: a case study. Materials Research Innovations, 1-8. doi:10.1080/14328917.2018.1533268
  81. Siwal, S., Devi, N., Perla, V. K., Ghosh, S. K., & Mallick, K. (2019). Promotional role of gold in electrochemical methanol oxidation. Catalysis, Structure & Reactivity, 5(1), 1-9. doi:10.1080/2055074x.2019.1595872
  82. Siwal, S. S., Chaudhary, G., Saini, A. K., Kaur, H., Saini, V., Mokhta, S. K., . . . Thakur, V. K. (2021). Key ingredients and recycling strategy of personal protective equipment (PPE): Towards sustainable solution for the COVID-19 like pandemics. Journal of Environmental Chemical Engineering, 9(5), 106284. doi:https://doi.org/10.1016/j.jece.2021.106284
  83. Siwal, S. S., Kaur, H., Saini, A. K., & Thakur, V. K. (2022). Recent Progress in Carbon Dots-Based Materials for Electrochemical Energy Storage Toward Environmental Sustainability. Advanced Energy and Sustainability Research, n/a(n/a), 2200062. doi:https://doi.org/10.1002/aesr.202200062
  84. Siwal, S. S., Saini, A. K., Rarotra, S., Zhang, Q., & Thakur, V. K. (2021). Recent advancements in transparent carbon nanotube films: chemistry and imminent challenges. Journal of Nanostructure in Chemistry. doi:10.1007/s40097-020-00378-2
  85. Siwal, S. S., Sheoran, K., Mishra, K., Kaur, H., Saini, A. K., Saini, V., . . . Thakur, V. K. (2022). Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. Chemosphere, 293, 133542. doi:https://doi.org/10.1016/j.chemosphere.2022.133542
  86. Siwal, S. S., Thakur, S., Zhang, Q. B., & Thakur, V. K. (2019). Electrocatalysts for electrooxidation of direct alcohol fuel cell: chemistry and applications. Materials Today Chemistry, 14, 100182. doi:https://doi.org/10.1016/j.mtchem.2019.06.004
  87. Siwal, S. S., Zhang, Q., Devi, N., & Thakur, K. V. (2020). Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers, 12(3). doi:10.3390/polym12030505
  88. Siwal, S. S., Zhang, Q., Saini, A. K., Gupta, V. K., Roberts, D., Saini, V., . . . Thakur, V. K. (2021). Recent advances in bio-electrochemical system analysis in biorefineries. Journal of Environmental Chemical Engineering, 9(5), 105982. doi:https://doi.org/10.1016/j.jece.2021.105982
  89. Sudhaik, A., Raizada, P., Khan, A. A. P., Singh, A., & Singh, P. (2022). Graphitic carbon nitride-based upconversion photocatalyst for hydrogen production and water purification. Nanofabrication, 7. doi:10.37819/nanofab.007.189
  90. Sun, L. (2019). Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering, 27(10), 2251-2260. doi:https://doi.org/10.1016/j.cjche.2019.05.003
  91. Tîlmaciu, C.-M., & Morris, M. C. (2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3.
  92. Tiwari, S. K., Kumar, V., Huczko, A., Oraon, R., Adhikari, A. D., & Nayak, G. C. (2016). Magical Allotropes of Carbon: Prospects and Applications. Critical Reviews in Solid State and Materials Sciences, 41(4), 257-317. doi:10.1080/10408436.2015.1127206
  93. Tiwari, S. K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10-29. doi:https://doi.org/10.1016/j.jsamd.2020.01.006
  94. Tshikovhi, A., Mishra, S. B., & Mishra, A. K. (2020). Nanocellulose-based composites for the removal of contaminants from wastewater. International Journal of Biological Macromolecules, 152, 616-632. doi:https://doi.org/10.1016/j.ijbiomac.2020.02.221
  95. Wang, H., Mi, X., Li, Y., & Zhan, S. (2020). 3D Graphene-Based Macrostructures for Water Treatment. Advanced Materials, 32(3), 1806843. doi:https://doi.org/10.1002/adma.201806843
  96. Warner, J. H., Schaffel, F., Rummeli, M., & Bachmatiuk, A. (2012). Graphene: Fundamentals and emergent applications: Newnes.
  97. Weng, C.-H., Tsai, C.-Z., Chu, S.-H., & Sharma, Y. C. (2007). Adsorption characteristics of copper(II) onto spent activated clay. Separation and Purification Technology, 54(2), 187-197. doi:https://doi.org/10.1016/j.seppur.2006.09.009
  98. Whitener, K. E., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and Related Materials, 46, 25-34. doi:https://doi.org/10.1016/j.diamond.2014.04.006
  99. Yan, Y., Miao, J., Yang, Z., Xiao, F.-X., Yang, H. B., Liu, B., & Yang, Y. (2015). Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews, 44(10), 3295-3346. doi:10.1039/C4CS00492B
  100. Yousef, S., Khattab, A., Osman, T. A., & Zaki, M. (2013). Effects of Increasing Electrodes on CNTs Yield Synthesized by Using Arc-Discharge Technique. Journal of Nanomaterials, 2013, 392126. doi:10.1155/2013/392126
  101. Yu, F., Ma, J., & Bi, D. (2015). Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environmental Science and Pollution Research, 22(6), 4715-4724. doi:10.1007/s11356-014-3723-9
  102. Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid & Interface Science, 20(5), 329-338. doi:https://doi.org/10.1016/j.cocis.2015.10.007
  103. Zhao, G., Li, J., Ren, X., Chen, C., & Wang, X. (2011). Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environmental Science & Technology, 45(24), 10454-10462. doi:10.1021/es203439v
  104. Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., . . . Wang, X. (2011). Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions, 40(41), 10945-10952. doi:10.1039/C1DT11005E
  105. Zhao, X., Li, H., Han, F., Dai, M., Sun, Y., Song, Z., . . . Niu, L. (2020). Electrochemical exfoliation of graphene as an anode material for ultra-long cycle lithium ion batteries. Journal of Physics and Chemistry of Solids, 139, 109301. doi:https://doi.org/10.1016/j.jpcs.2019.109301

How to Cite

Beniwal, K. ., Kaur , H. ., Saini, A. K. ., & Siwal, S. S. . (2022). Synthesis and applications of carbon porous nano-materials for environmental remediation. Nanofabrication, 7, 174–194. https://doi.org/10.37819/nanofab.007.249

HTML
240

Total
109 4

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Komal Beniwal, Harjot Kaur , Adesh Kumar Saini, Samarjeet Singh Siwal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Similar Articles

You may also start an advanced similarity search for this article.