Skip to main content Skip to main navigation menu Skip to site footer

Graphitic carbon nitride-based upconversion photocatalyst for hydrogen production and water purification

  • Anita Sudhaik ,
  • Pankaj Raizada ,
  • Aftab Aslam Parwaz Khan ,
  • Arachana Singh ,
  • Pardeep Singh ,

Abstract

Upconversion luminescence (UCL) is mainly a nonlinear optical method that some engineered nanomaterials can attain and helps in the transformation of low energy phonons (near-infrared photons) into higher energy phonons (ultraviolet (UV)  and visible light photons). Upconversion (UC) nanomaterials are a suitable candidate for preparing near-infrared (NIR) light-responsive photocatalytic systems by mixing with other photocatalysts. Many reports have been published on lanthanide-based UC materials (Ln3+ ions as dopants) and carbon quantum dots (CQDs) carrying UC property with their use in photocatalytic removal of pollutants and energy production. Besides these UC nanomaterials, graphitic carbon nitride (g-C3N4) as a potential photocatalyst (metal-free and ecofriendly) has gained attention owing to its unique and amazing possessions. But some limitations and inadequate utilization of visible light restrict its photocatalytic applicability. Therefore, to enhance or widen its light-harvesting property towards the NIR region, the integration of upconversion nanocrystals (UC NCs) into g-C3N4 is considered an effective approach. Thus, the present review is focused on the amalgamation of g-C3N4 with UC nanomaterials for full solar spectrum absorption in H2 production and pollutant degradation via NIR light absorption.

 

Section

References

  1. Singh, P., Sudhaik, A., Raizada, P., Shandilya, P., Sharma, R., Hosseini-Bandegharaei, A., Photocatalytic performance and quick recovery of BiOI/Fe3O4@ graphene oxide ternary photocatalyst for photodegradation of 2, 4-dintirophenol under visible light, Mater. Today Chem. 12 (2019) 85-95.
  2. Nguyen, V.-H., Nguyen, B.-S., Jin, Z., Shokouhimehr, M., Jang, H.W., Hu, C., Singh, P., Raizada, P., Peng, W., Lam, S.S., Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels, Chem. Eng. J. 402 (2020) 126184.
  3. Kumar, A., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V.K., Nguyen, V.-H., Singh, P., C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges, J. Mater. Chem. A, 9 (2021) 111-153.
  4. Kumar, R., Raizada, P., Khan, A.A.P., Nguyen, V.-H., Van Le, Q., Ghotekar, S., Selvasembian, R., Gandhi, V., Singh, A., Singh, P., Recent progress in emerging BiPO4-based photocatalysts: synthesis, properties, modification strategies, and photocatalytic applications, J. Mater. Sci. Technol. 108 (2022) 208-225.
  5. Lau, V.W., Moudrakovski, I., Botari, T., Weinberger, S., Mesch, M.B., Duppel, V., Senker, J., Blum, V., Lotsch, B.V., Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites, Nat. Commun. 7 (2016) 1-10.
  6. Xia, C., Kirlikovali, K.O., Nguyen, T.H.C., Nguyen, X.C., Tran, Q.B., Duong, M.K., Dinh, M.T.N., Nguyen, D.L.T., Singh, P., Raizada, P., The emerging covalent organic frameworks (COFs) for solar-driven fuels production, Coord. Chem. Rev. 446 (2021) 214117.
  7. Jawed, A., Kar, P., Verma, R., Shukla, K., Hemanth, P., Thakur, V.K., Pandey, L.M., Gupta, R.K., Integration of biological control with engineered heterojunction nano-photocatalysts for sustainable and effective management of water hyacinth weed, J. Environ. Chem. Eng. 10(1) (2022) 106976.
  8. Misra, M., Singh, N., Gupta, R.K., Enhanced visible-light-driven photocatalytic activity of Au@Ag core-shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds, Catal. Sci. Technol. 7 (2017) 570-580.
  9. Raizada, P. Nguyen, T.H.C., Patial, S., Singh, P., Bajpai, A., Nguyen, V.-H., Nguyen, D.L.T., Nguyen, X.C., Khan, A.A.P., Rangabhashiyam, S., Kim, S.Y., Toward practical solar-driven photocatalytic water splitting on two-dimensional MoS2 based solid-state Z-scheme and S-scheme heterostructure, Fuel, 303 (2021) 121302.
  10. Rana, A., Sudhaik, A., Raizada, P., Khan, A.A.P., Van Le, Q., Singh, A., Selvasembian, R., Nadda, A., Singh, P., An overview on cellulose-supported semiconductor photocatalysts for water purification, Nanotechnol. Environ. Eng. 6 (2021) 1-38.
  11. Kumar, R., Raizada, P., Verma, N., Hosseini-Bandegharaei, A., Thakur, V.K., Nguyen, V.-H., Singh, P., Recent advances on water disinfection using bismuth based modified photocatalysts: Strategies and challenges, J. Clean. Prod. 297 (2021) 126617.
  12. Sharma, B., Thakur, S., Mamba, G., Gupta, R.K., Gupta, V.K., Thakur, V.K., Titania modified gum tragacanth based hydrogel nanocomposite for water remediation, J. Environ. Chem. Eng. 9 (2021) 104608.
  13. Kumar, R., Sudhaik, A., Khan, A.A.P., Raizada, P., Asiri, A.M., Mohapatra, S., Thakur, S., Thakur, V.K., Singh, P., Current status on designing of dual Z-scheme photocatalysts for energy and environmental applications, J. Ind. Eng. Chem. (2021) In press.
  14. Kumar, Y., Kumar, R., Raizada, P., Khan, A.A.P., Van Le, Q., Singh, P., Nguyen, V.-H., Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and Perspectives, J. Mater. Sci. Technol. 87 (2021) 234-257.
  15. Kumar, R., Sudhaik, A., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V.K., Saini, A., Saini, V., Singh, P., An overview on bismuth molybdate based photocatalytic systems: Controlled morphology and enhancement strategies for photocatalytic water purification, J. Environ. Chem. Eng. 8 (2020) 104291.
  16. Peng, W., Nguyen, T.H.C., Nguyen, D.L.T., Wang, T., Tran, T.V.T., Le, T.H., Le, H.K., Grace, A.N., Singh, P., Raizada, P., Dinh, M.T., A roadmap towards the development of superior photocatalysts for solar-driven CO2-to-fuels production, Renew. Sustain. Energy Rev. 148 (2021) 111298.
  17. Fujishima, A., Honda, K.J., Electrochemical photolysis of water at a semiconductor electrode, 238 (1972) 37-38.
  18. Kar, P., Shukla, K., Jain, P., Sathiyan, G., Gupta, R.K., Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review, Nano Mater. Sci. 3 (2021) 25-46.
  19. Singh, N., Prakash, J., Misra, M., Sharma, A., Gupta, R.K., Dual functional Ta-doped electrospun TiO2 nanofibers with enhanced photocatalysis and SERS detection for organic compounds, ACS Appl. Mater. Interfaces, 9 (2017) 28495-28507.
  20. Sharma, K., Raizada, P., Hasija, V., Singh, P., Bajpai, A., Nguyen, V.-H., Rangabhashiyam, S., Kumar, P., Nadda, A.K., Kim, S.Y., Varma, R.S., ZnS-based quantum dots as photocatalysts for water purification, J. Water Process Eng. 43 (2021) 102217.
  21. Jain, P., Kumar, A., Verma, N., R.K. Gupta, In-situ synthesis of TiO2 nanoparticles in ACF: Photocatalytic degradation under continuous flow, Sol. Energy, 189 (2019) 35-44.
  22. Soni, V., Xia, C., Cheng, C.K., Nguyen, V.-H., Nguyen, D.L.T., Bajpai, A., Kim, S.Y., Van Le, Q., Khan, A.A.P., Singh, P., Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion, Appl. Mater. Today. 24 (2021) 101074.
  23. Kar, P., Shukla, K., Jain,P., Gupta, R.K., Engineering, An activated carbon fiber supported Fe2O3@bismuth carbonate heterojunction for enhanced visible light degradation of emerging pharmaceutical pollutants, React. Chem. Eng. 6 (2021) 2029-2041.
  24. Sharma, S., Dutta, V., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V.K., Singh, A., Van Le, Q., Nguyen, V.-H., Singh, P., Constructing a novel all-solid-state Z-scheme BiVO4/CQDs/FeVO4 photocatalyst and its enhancement to the photocatalytic activity, Mater. Lett. 297 (2021) 129940.
  25. Dutta, V., Sharma, S., Raizada, P., Khan, A.A.P., Asiri, A.M., Nadda, A., Singh, P., Van Le, Q., Huang, C.-W., Nguyen, D.L.T., Pansambal, S., Recent advances and emerging trends in (BiO)2CO3 based photocatalysts for environmental remediation: A review, Surf. Interfaces, 25 (2021) 101273.
  26. Singh, N., Prakash, J., Gupta, R.K., Engineering, Design and engineering of high-performance photocatalytic systems based on metal oxide-graphene-noble metal nanocomposites, Mol. Syst. Des. Eng. 2 (2017) 422-439.
  27. Patial, S., Kumar, R., Raizada, P., Singh, P., Le, Q.V., Lichtfouse, E., Nguyen, D.L.T., Nguyen, V.-H., Boosting light-driven CO2 reduction towards solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts, Environ. Res. 197 (2021) 111134.
  28. Ohko, Y., Ando, I., Niwa, C., Tatsuma, T., Yamamura, T., Nakashima, T., Kubota, Y., Fujishima, A., Degradation of bisphenol A in water by TiO2 photocatalyst, Environ. Sci. Technol. 35 (2001) 2365-2368.
  29. Zinatloo-Ajabshir, S., Salavati-Niasari, M., Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies, J. Mol. Liq. 216 (2016) 545-551.
  30. Nasseh, N., Taghavi, L., Barikbin, B., Nasseri, M.A., Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater, J. Clean. Prod. 179 (2018) 42-54.
  31. Raizada, P., Sudhaik, A., Singh, P., Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review, Mater. Sci. Energy Technol. 2 (2019) 509-525.
  32. Jiang, L., Yang, J., Zhou, S., Yu, H., Liang, J., Chu, W., Li, H., Wang, H., Wu, Z., Yuan, X., Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts, Coord. Chem. Rev. 439 (2021) 213947.
  33. Yang, M.Q., Gao, M., Hong, M.G., Ho, W., Visible‐to‐NIR photon harvesting: progressive engineering of catalysts for solar‐powered environmental purification and fuel production, Adv. Mater. 30 (2018) 1802894.
  34. Tian, Q. Yao, W., Wu, W., Jiang, C., NIR light-activated upconversion semiconductor photocatalysts, Nanoscale Horiz. 4 (2019) 10-25.
  35. Linsebigler, A.L., Lu, G., Yates Jr J.T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.
  36. Raizada, P., Sudhaik, A., Singh, P., Hosseini-Bandegharaei, A., Gupta, V.K., Agarwal, S., Silver-mediated Bi2O3 and graphitic carbon nitride nanocomposite as all solid state Z scheme photocatalyst for imidacloprid pesticide abatement from water, Desalination Water Treat. 171 (2019) 344-355.
  37. Zhang, Q., Yang, F., Xu, Z., Chaker, M., Ma, D., Are lanthanide-doped upconversion materials good candidates for photocatalysis?, Nanoscale Horiz. 4 (2019) 579-591.
  38. Fan, W., Bai, H., Shi, W., Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting, CrystEngComm. 16 (2014) 3059-3067.
  39. Wang, L., Xu, X., Cheng, Q., Dou, S.X., Du, Y., Near‐Infrared‐Driven Photocatalysts: Design, Construction, and Applications, Small, 17 (2021) 1904107.
  40. Raizada, P., Priya, B., Thakur, P., Singh, P., Solar light induced photodegradation of oxytetracyline using Zr doped TiO2/CaO based nanocomposite, Ind. J. Chem.-Sec. A, 55A (2016) 803-809.
  41. Raizada, P., Sudhaik, A., Singh, V.P., Gupta, V.K., Hosseini-Bandegharaei, A., Kumar, R., Singh, P., Solar light assisted degradation of oxytetracycline from water using Bi2O3/Fe3O4 supported graphitic carbon nitride photocatalyst, Desalination Water Treat. 148 (2019) 338-350.
  42. Raizada, P., Sudhaik, A., Patial, S., Hasija, V., Khan, A.A.P., Singh, P., Gautam, S., Kaur, M., Nguyen, V.-H., Engineering nanostructures of CuO-based photocatalysts for water treatment: current progress and future challenges, Arab. J. Chem. 13 (2020) 8424-8457.
  43. Sudhaik, A., Raizada, P., Singh, P., Hosseini-Bandegharaei, A., Thakur, V.K., Nguyen, V.-H., Highly effective degradation of imidacloprid by H2O2/fullerene decorated P-doped g-C3N4 photocatalyst, J. Environ. Chem. Eng. 8 (2020) 104483.
  44. Sudhaik, A., Raizada, P., Thakur, S., Saini, A.K., Singh, P., Hosseini-Bandegharaei, A., Metal-free photo-activation of peroxymonosulfate using graphene supported graphitic carbon nitride for enhancing photocatalytic activity, Mater. Lett. 277 (2020) 128277.
  45. Kumar, A., Raizada, P,. Singh, P., Saini, R.V., Saini, A.K., Hosseini-Bandegharaei, A., Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification, Chem. Eng. J. 391 (2020) 123496.
  46. Zhao, Z., Sun, Y., Dong, F., Graphitic carbon nitride based nanocomposites: a review, Nanoscale, 7 (2015) 15-37.
  47. Sudhaik, A., Raizada, P., Shandilya, P., Jeong, D.-Y., Lim, J.-H., Singh, P., Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants, J. Ind. Chem. Eng. 67 (2018) 28-51.
  48. Mishra, A., Mehta, A., Basu, S., Shetti, N.P., Reddy, K.R., Aminabhavi, T.M., Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review, Carbon, 149 (2019) 693-721.
  49. Zhang, J., Chen, Y., Wang, X., Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications, Energy Environ. Sci. 8 (2015) 3092-3108.
  50. Hao, Q., Jia, G., Wei, W., Vinu, A., Wang, Y., Arandiyan, H., Ni, B.-J., Graphitic carbon nitride with different dimensionalities for energy and environmental applications, Nano Res. 13 (2020) 18-37.
  51. Darkwah, W.K., Ao, Y. Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications, Nanoscale Res. Lett. 13 (2018) 1-15.
  52. Rono, N., Kibet, J.K., Martincigh, B.S., Nyamori, V.O., A review of the current status of graphitic carbon nitride, Crit. Rev. Solid State Mater. Sci. 46 (2021) 189-217.
  53. Hasija, V., Raizada, P., Sudhaik, A., Sharma, K., Kumar, A., Singh, P., Jonnalagadda, S.B., Thakur, V.K., Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review, Appl. Mater. Today, 15 (2019) 494-524.
  54. Sudhaik, A., Khan, A.A.P., Raizada, P., Nguyen, V.-H., Van Le, Q., Asiri, A.M., Singh, P., Strategies based review on near-infrared light-driven bismuth nanocomposites for environmental pollutants degradation, (2021) 132781.
  55. Sang, Y., Liu, H., Umar, A., Photocatalysis from UV/Vis to near‐infrared light: towards full solar‐light spectrum activity, ChemCatChem, 7 (2015) 559-573.
  56. Zhou, B., Shi, B., Jin, D., Liu, X., Controlling upconversion nanocrystals for emerging applications, Nat. Nanotechnol. 10 (2015) 924-936.
  57. Wang, W., Ding, M., Lu, C., Ni, Y., Xu, Z., A study on upconversion UV–vis–NIR responsive photocatalytic activity and mechanisms of hexagonal phase NaYF4: Yb3+, Tm3+@ TiO2 core–shell structured photocatalyst, Appl. Catal. B: Environ. 144 (2014) 379-385.
  58. Lee, S.Y., Lee, G., Jun, Y.-S., Park, Y.I., Visible/near-infrared driven highly efficient photocatalyst based on upconversion nanoparticles/g-C3N4 nanocomposite, Appl. Surf. Sci. 508 (2020) 144839.
  59. Feng, L., He, F., Liu, B., Yang, G., Gai, S., Yang, P., Li, C., Dai, Y., Lv, R., Lin, J., g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging, Chem. Mater. 28 (2016) 7935-7946.
  60. Liu, Y., Meng, X., Bu, W., Upconversion-based photodynamic cancer therapy, Coord. Chem. Rev. 379 (2019) 82-98.
  61. Singh-Rachford, T.N., Castellano, F.N., Photon upconversion based on sensitized triplet–triplet annihilation, Coord. Chem. Rev. 254 (2010) 2560-2573.
  62. Zhu, Y., Zheng, X., Lu, Y., Yang, X., Kheradmand, A., Jiang, Y., Efficient upconverting carbon nitride nanotubes for near-infrared-driven photocatalytic hydrogen production, Nanoscale, 11 (2019) 20274-20283.
  63. Han, S., Deng, R., Xie, X., Liu, X., Enhancing luminescence in lanthanide‐doped upconversion nanoparticles, Angew. Chem. Int. Ed. 53 (2014) 11702-11715.
  64. Huang, M.Z., Yuan, B., Dai, L., Fu, M.L., Toward NIR driven photocatalyst: Fabrication, characterization, and photocatalytic activity of β-NaYF4: Yb3+, Tm3+/g-C3N4 nanocomposite, J. Colloid Interface Sci. 460 (2015) 264-272.
  65. Zhou, J., Liu, Q., Feng, W., Sun, Y., Li, F., Upconversion luminescent materials: advances and applications, Chem. Rev. 115 (2015) 395-465.
  66. Li, X., Zhang, F., Zhao, D., Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure, Chem. Soc. Rev. 44 (2015) 1346-1378.
  67. Bingham, S., Daoud, W.A., Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping, J. Mater. Chem. 21 (2011) 2041-2050.
  68. Eliseeva, S.V., Bünzli, J.C.G., Lanthanide luminescence for functional materials and bio-sciences, Chem. Soc. Rev. 39 (2010) 189-227.
  69. Gai, S., Li, C., Yang, P., Lin, J., Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications, Chem. Rev. 114 (2014) 2343-2389.
  70. Auzel, F., Upconversion and anti-stokes processes with f and d ions in solids, Chem. Rev. 104 (2004) 139-174.
  71. Wenger, O.S., Güdel, H.U., Broadband near-infrared sensitization of visible upconversion luminescence in V3+ and Mo3+ co-doped Cs2NaYCl6, J. Phys. Chem. B, 106 (2002) 10011-10019.
  72. Amao, Y., Shuto, N., Furuno, K., Obata, A., Fuchino, Y., Uemura, K., Kajino,T., Sekito, T., Iwai, S., Miyamoto, Y., Artificial leaf device for solar fuel production, Faraday Discuss. 155 (2012) 289-296.
  73. Renero-Lecuna, C., Martín-Rodríguez, R., Valiente, R., González, J., Rodríguez, F., Kramer, K., Gudel, H., Origin of the high upconversion green luminescence efficiency in β-NaYF4: 2% Er3+, 20% Yb3+, Chem. Mater. 23 (2011) 3442-3448.
  74. Wenger, O.S., Gamelin, D.R., Güdel, H.U., Chemical modification of transition metal upconversion properties: exchange enhancement of Ni2+ upconversion rates in Ni2+: RbMnCl3, J. Am. Chem. Soc. 122 (2000) 7408-7409.
  75. Gamelin, D.R., Güdel, H.U., Two-photon spectroscopy of d3 transition metals: near-IR-to-visible upconversion luminescence by Re4+ and Mo3+, J. Am. Chem. Soc. 120 (1998) 12143-12144.
  76. Chen, G., Ohulchanskyy, T.Y., Kumar, R., Ågren, H., Prasad, P.N., Ultrasmall monodisperse NaYF4: Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence, ACS Nano, 4 (2010) 3163-3168.
  77. Suyver, J., Grimm, J., Krämer, K., Güdel, H.-U., Highly efficient near-infrared to visible up-conversion process in NaYF4: Er3+, Yb3+, J. Lumin. 114 (2005) 53-59.
  78. Heer, S., Kömpe, K., Güdel, H.U., Haase, M., Highly efficient multicolour upconversion emission in transparent colloids of lanthanide‐doped NaYF4 nanocrystals, Adv. Mater. 16 (2004) 2102-2105.
  79. Xu, J., Brenner, T.J., Chen, Z., Neher, D., Antonietti, M., Shalom, M., Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light, ACS Appl. Mater. Interfaces, 6 (2014) 16481-16486.
  80. Yang, C., Zhao, W., Yu, X., Liu, H., Liu, J., Van Deun, R., Liu, Z., Facile synthesis and luminescence property of core-shell structured NaYF4: Yb, Er/g-C3N4 nanocomposites, Mater. Res. Bull. 94 (2017) 415-422.
  81. Lu, X., Chen, F., Qian, J., Fu, M., Jiang, Q., Zhang, Q., Facile fabrication of CeF3/g-C3N4 heterojunction photocatalysts with upconversion properties for enhanced photocatalytic desulfurization performance, J. Rare Earths. 39 (2021) 1204-1210.
  82. Turshatov, A., Busko, D., Baluschev, S., Miteva, T., Landfester, K., Micellar carrier for triplet–triplet annihilation-assisted photon energy upconversion in a water environment, New J. Phys. 13 (2011) 083035.
  83. Parker, C., Hatchard, C., Sensitised anti-stokes delayed fluorescence, Proc. Chem. Soc. Lond. (1962) 386.
  84. Islangulov, R.R., Kozlov, D.V., Castellano, F.N., Low power upconversion using MLCT sensitizers, Chem. Commun. (2005) 3776-3778.
  85. Fang, J., Chen, Y., Wang, W., Fang, L., Lu, C., Zhu, C., Kou, J., Ni, Y., Xu, Z., Highly efficient photocatalytic hydrogen generation of g-C3N4-CdS sheets based on plasmon-enhanced triplet–triplet annihilation upconversion, Appl. Catal. B: Environ. 258 (2019) 117762.
  86. Xia, X., Deng, N., Cui, G., Xie, J., Shi, X., Zhao, Y., Wang, Q., Wang, W., Tang, B., NIR light induced H2 evolution by a metal-free photocatalyst, Chem. Commun. 51 (2015) 10899-10902.
  87. Tyagi, A., Tripathi, K.M., Singh, N., Choudhary, S., Gupta, R.K., Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis, RSC Adv. 6 (2016) 72423-72432.
  88. Han, X., Han, Y., Huang, H., Zhang, H., Zhang, X., Liu, R., Liu, Y., Kang, Z., Synthesis of carbon quantum dots/SiO2 porous nanocomposites and their catalytic ability for photo-enhanced hydrocarbon selective oxidation, Dalton Trans. 42 (2013) 10380-10383.
  89. Liu, S., Cao, H., Wang, Z., Tu, W., Dai, Z., Label-free photoelectrochemical cytosensing via resonance energy transfer using gold nanoparticle-enhanced carbon dots, Chem. Commun. 51 (2015) 14259-14262.
  90. Jiang, D., Zhang, Y., Chu, H., Liu, J., Wan, J., Chen, M., N-doped graphene quantum dots as an effective photocatalyst for the photochemical synthesis of silver deposited porous graphitic C3N4 nanocomposites for nonenzymatic electrochemical H2O2 sensing, RSC Adv. 4 (2014) 16163-16171.
  91. Gao, X., Lu, Y., Zhang, R., He, S., Ju, J., Liu, M., Li, L., Chen, W., One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence, J. Mater. Chem. C, 3 (2015) 2302-2309.
  92. Jahanbakhshi, M., Habibi, B., A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum, Bioelectronics, 81 (2016) 143-150.
  93. Yu, H., Zhao, Y., Zhou, C., Shang, L., Peng, Y., Cao, Y., Wu, L.-Z., Tung, C.-H., Zhang, T., Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A, 2 (2014) 3344-3351.
  94. Zhang, X., Wang, F., Huang, H., Li, H., Han, X., Liu, Y., Kang, Z., Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light, Nanoscale, 5 (2013) 2274-2278.
  95. Amjadi, M., Abolghasemi-Fakhri, Z., Hallaj, T., Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine, J. Photochem. Photobiol. A: Chem. 309 (2015) 8-14.
  96. Tian, J., Leng, Y., Zhao, Z., Xia, Y., Sang, Y., Hao, P., Zhan, J., Li, M., Liu, H., Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Nano Energy, 11 (2015) 419-427.
  97. Zhang, X., Huang, H., Liu, J., Liu, Y., Kang, Z., Carbon quantum dots serving as spectral converters through broadband upconversion of near-infrared photons for photoelectrochemical hydrogen generation, J. Mater. Chem. A, 1 (2013) 11529-11533.
  98. Hassan, M., Gomes, V.G., Dehghani, A, Ardekani, S.M., Engineering carbon quantum dots for photomediated theranostics, Nano Res. 11 (2018) 1-41.
  99. Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., Yang, B., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective, Nano Res. 8 (2015) 355-381.
  100. Yu, H., Shi, R., Zhao, Y., Waterhouse, G.I., Wu, L.Z., Tung, C.H., Zhang, T., Smart utilization of carbon dots in semiconductor photocatalysis, Adv. Mater. 28 (2016) 9454-9477.
  101. Liu, Q., Chen, T., Guo, Y., Zhang, Z., Fang, X., Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution, Appl. Catal. B: Environ. 193 (2016) 248-258.
  102. Feng, C., Deng, Y., Tang, L., Zeng, G., Wang, J., Yu, J., Liu, Y., Peng, B., Feng, H., Wang, J., Core-shell Ag2CrO4/N-GQDs@ g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities, Appl. Catal. B: Environ. 239 (2018) 525-536.
  103. Che, H., Liu, C., Hu, W., Hu, H., Li, J., Dou, J., Shi, W., Li, C., Dong, H., NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions, Catal. Sci. Technol. 8 (2018) 622-631.
  104. Zhao, F., Khaing, K.K., Yin, D., Liu, B., Chen, T., Wu, C., Huang, K., Deng, L., Li, L., Large enhanced photocatalytic activity of g-C3N4 by fabrication of a nanocomposite with introducing upconversion nanocrystal and Ag nanoparticles, RSC Adv. 8 (2018) 42308-42321.
  105. Murali, G., Vattikuti, S.P., Kshetri, Y.K., Lee, H., Modigunta, J.K.R., Reddy, C.S., Park, S., Lee, S., Poornaprakash, B., Lee, H., Near-infrared-activated Z-scheme NaYF4:Yb/Tm@Ag3PO4/Ag@g-C3N4 photocatalyst for enhanced H2 evolution under simulated solar light irradiation, Chem. Eng. J. 421 (2021) 129687.
  106. Wang, W., Jimmy, C.Y., Shen, Z., Chan, D.K., Gu, T., g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application, Chem. Commun. 50 (2014) 10148-10150.
  107. Huang, Z., Chen, H., Zhao, L., He, X., Du, Y., Fang, W., Li, W., Tian, P., Constructing g-C3N4 quantum dots modified g-C3N4/GO nanosheet aerogel for UV-Vis-NIR driven highly efficient photocatalytic H2 production, Int. J. Hydrog. Energy. 44 (2019) 31041-31052.
  108. Qin, J., Zeng, H., Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation, Appl. Catal. B: Environ. 209 (2017) 161-173.
  109. Zhang, Q., Deng, J., Xu, Z., Chaker, M., Ma, D., High-efficiency broadband C3N4 photocatalysts: synergistic effects from upconversion and plasmons, ACS Catal. 7 (2017) 6225-6234.
  110. Zhang, C., Fu, Z., Hong, F., Pang, G., Dong, T., Zhang, Y., Liu, G., Dong, X., Wang, J., Non-metal group doped g-C3N4 combining with BiF3: Yb3+, Er3+ upconversion nanoparticles for photocatalysis in UV–Vis–NIR region, Colloid. Surf. A: Physicochem. Eng. Asp. 627 (2021) 127180.
  111. Liang, S., He, M., Guo, J., Yue, J., Pu, X., Ge, B., Li, W., Fabrication and characterization of BiOBr:Yb3+, Er3+/g-C3N4 p-n junction photocatalysts with enhanced visible-NIR-light-driven photoactivities, Sep. Purif. Technol. 206 (2018) 69-79.
  112. Cheng, E., Zhou, S., Li, M., Li, Z., Synthesis of g-C3N4-based NaYF4:Yb,Tm@TiO2 ternary composite with enhanced Vis/NIR-driven photocatalytic activities, Appl. Surf. Sci. 410 (2017) 383-392.
  113. Zhang, M., Zhang, Y., Tang, L., Zeng, G., Wang, J., Zhu, Y., Feng, C., Deng, Y., He, W., Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation, J. Colloid Interface Sci. 539 (2019) 654-664.
  114. Feng, S., Chen, T., Liu, Z., Shi, J., Yue, X., Li, Y., Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation, Sci. Total Environ. 704 (2020) 135404.

How to Cite

Sudhaik, A. ., Raizada, P. ., Khan, A. A. P. ., Singh, A. ., & Singh, P. . (2022). Graphitic carbon nitride-based upconversion photocatalyst for hydrogen production and water purification. Nanofabrication, 7, 280–313. https://doi.org/10.37819/nanofab.007.189

HTML
1106

Total
267

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Anita Sudhaik, Pankaj Raizada, Aftab Aslam Parwaz Khan, Arachana Singh, Pardeep Singh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.