Skip to main content Skip to main navigation menu Skip to site footer

Advances in human brain proteomics analysis of neurodegenerative diseases

  • Yashuang Chen ,
  • Xia Wang
  • Benhong Xu

Abstract

Neurodegenerative diseases are characterized by progressive loss of neurons manifested as motor dysfunction and/or cognitive decline. Aberrant protein aggregation with altered physicochemical properties occurs in most neurodegenerative diseases. The pathophysiological mechanisms leading to the onset and progress of neurodegenerative diseases are still not fully understood. On the one hand, limited studies investigate neurodegenerative disease from human brain tissues. On the other, a comprehensive and efficient analysis method is needed to detect the signaling pathways evolved in neurodegenerative disease. Proteomics on human brains identifies key diagnostic biomarkers and treatment/therapeutic targets of neurodegenerative disorders. In recent years, several proteomics studies conducted on brain tissues from patients with neurodegenerative diseases have shown that changes in protein abundance or post-translational modification underly the disease pathogenesis. In this review, we summarize the major advances of human brain proteomics in the research on Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis and Huntington’s disease as the most common neurodegenerative diseases. Finally, we proposed some perspective clues for future work.

Section

References

  1. Abreha, M. H., Dammer, E. B., Ping, L., Zhang, T., Duong, D. M., Gearing, M., . . . Seyfried, N. T. (2018). Quantitative Analysis of the Brain Ubiquitylome in Alzheimer's Alzheimer’s Disease. Proteomics, 18(20), e1800108. doi:10.1002/pmic.201800108
  2. Akıl, E., Bulut, A., Kaplan, İ., Özdemir, H. H., Arslan, D., & Aluçlu, M. U. (2015). The increase of carcinoembryonic antigen (CEA), high-sensitivity C-reactive protein, and neutrophil/lymphocyte ratio in Parkinson's Parkinson’s disease. Neurol Sci, 36(3), 423-428. doi:10.1007/s10072-014-1976-1
  3. Alonso, R., Pisa, D., Marina, A. I., Morato, E., Rábano, A., Rodal, I., & Carrasco, L. (2015). Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. International Journal of Biological Sciences, 11(5), 546-558. doi:10.7150/ijbs.11084
  4. Alzheimer's Association (2021). Alzheimer’s disease facts and figures. Alzheimers Dement, 17(3), 327-406. doi:10.1002/alz.12328
  5. Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., & Lippert, T. (2016). The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain. NEURON, 92(3), 574-581. doi:10.1016/j.neuron.2016.10.046
  6. Amunts, K., Knoll, A. C., Lippert, T., Pennartz, C. M. A., Ryvlin, P., Destexhe, A., . . . Bjaalie, J. G. (2019). The Human Brain Project-Synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLOS BIOLOGY, 17(7), e3000344. doi:10.1371/journal.pbio.3000344
  7. An, C., Pu, X., Xiao, W., & Zhang, H. (2018). Expression of the DJ-1 protein in the serum of Chinese patients with Parkinson's Parkinson’s disease. Neurosci Lett, 665, 236-239. doi:10.1016/j.neulet.2017.12.023
  8. Arakhamia, T., Lee, C. E., Carlomagno, Y., Duong, D. M., Kundinger, S. R., Wang, K., . . . Fitzpatrick, A. W. P. (2020). Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Cell, 180(4), 633-644.e612. doi:10.1016/j.cell.2020.01.027
  9. Attems, J., Walker, L., & Jellinger, K. A. (2014). Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol, 127(4), 459-475. doi:10.1007/s00401-014-1261-7
  10. Atwood, C. S., Martins, R. N., Smith, M. A., & Perry, G. (2002). Senile plaque composition and posttranslational modification of amyloid-beta peptide and associated proteins. Peptides, 23(7), 1343-1350. doi:10.1016/s0196-9781(02)00070-0
  11. Bai, B., Vanderwall, D., Li, Y., Wang, X., Poudel, S., Wang, H., . . . Peng, J. (2021). Proteomic landscape of Alzheimer's Alzheimer’s Disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener, 16(1), 55. doi:10.1186/s13024-021-00474-z
  12. Bai, B., Wang, X., Li, Y., Chen, P. C., Yu, K., Dey, K. K., . . . Peng, J. (2020). Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Alzheimer’s Disease Progression. Neuron, 105(6), 975-991.e977. doi:10.1016/j.neuron.2019.12.015
  13. Ballatore, C., Lee, V. M., & Trojanowski, J. Q. (2007). Tau-mediated neurodegeneration in Alzheimer's Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9), 663-672. doi:10.1038/nrn2194
  14. Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., . . . Kopito, R. R. (2007). Global changes to the ubiquitin system in Huntington's Huntington’s disease. NATURE, 448(7154), 704-708. doi:10.1038/nature06022
  15. Broadwater, L., Pandit, A., Clements, R., Azzam, S., Vadnal, J., Sulak, M., . . . McDonough, J. (2011). Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim Biophys Acta, 1812(5), 630-641. doi:10.1016/j.bbadis.2011.01.012
  16. Brown, N., Alkhayer, K., Clements, R., Singhal, N., Gregory, R., Azzam, S., . . . McDonough, J. (2016). Neuronal Hemoglobin Expression and Its Relevance to Multiple Sclerosis Neuropathology. J Mol Neurosci, 59(1), 1-17. doi:10.1007/s12031-015-0711-6
  17. Buratti, E. (2018). TDP-43 post-translational modifications in health and disease. EXPERT OPINION ON THERAPEUTIC TARGETS, 22(3), 279-293. doi:10.1080/14728222.2018.1439923
  18. Burrows, D. J., McGown, A., Jain, S. A., De Felice, M., Ramesh, T. M., Sharrack, B., & Majid, A. (2019). Animal models of multiple sclerosis: From rodents to zebrafish. Mult Scler, 25(3), 306-324. doi:10.1177/1352458518805246
  19. Catherman, A. D., Skinner, O. S., & Kelleher, N. L. (2014). Top Down proteomics: facts and perspectives. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 445(4), 683-693. doi:10.1016/j.bbrc.2014.02.041
  20. Chait, B. T. (2011). Mass spectrometry in the postgenomic era. Annual Review of Biochemistry, 80, 239-246. doi:10.1146/annurev-biochem-110810-095744
  21. Chen, S., Lu, F. F., Seeman, P., & Liu, F. (2012). Quantitative proteomic analysis of human substantia nigra in Alzheimer's Alzheimer’s disease, Huntington's Huntington’s disease and Multiple sclerosis. NEUROCHEMICAL RESEARCH, 37(12), 2805-2813. doi:10.1007/s11064-012-0874-2
  22. Chia, S. J., Tan, E. K., & Chao, Y. X. (2020). Historical Perspective: Models of Parkinson's Parkinson’s Disease. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 21(7). doi:10.3390/ijms21072464
  23. Chiang, M. C., Juo, C. G., Chang, H. H., Chen, H. M., Yi, E. C., & Chern, Y. (2007). Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach. MOLECULAR & CELLULAR PROTEOMICS, 6(5), 781-797. doi:10.1074/mcp.M600356-MCP200
  24. Chiu, C. C., Yeh, T. H., Lai, S. C., Weng, Y. H., Huang, Y. C., Cheng, Y. C., . . . Lu, C. S. (2016). Increased Rab35 expression is a potential biomarker and implicated in the pathogenesis of Parkinson's Parkinson’s disease. Oncotarget, 7(34), 54215-54227. doi:10.18632/oncotarget.11090
  25. Comes, A. L., Papiol, S., Mueller, T., Geyer, P. E., Mann, M., & Schulze, T. G. (2018). Proteomics for blood biomarker exploration of severe mental illness: pitfalls of the past and potential for the future. Transl Psychiatry, 8(1), 160. doi:10.1038/s41398-018-0219-2
  26. Consortium, H. i. (2012). Induced pluripotent stem cells from patients with Huntington's Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell, 11(2), 264-278. doi:10.1016/j.stem.2012.04.027
  27. Cortes, C. J., & La Spada, A. R. (2014). The many faces of autophagy dysfunction in Huntington's Huntington’s disease: from mechanism to therapy. DRUG DISCOVERY TODAY, 19(7), 963-971. doi:10.1016/j.drudis.2014.02.014
  28. Culver, B. P., Savas, J. N., Park, S. K., Choi, J. H., Zheng, S., Zeitlin, S. O., . . . Tanese, N. (2012). Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. JOURNAL OF BIOLOGICAL CHEMISTRY, 287(26), 21599-21614. doi:10.1074/jbc.M112.359307
  29. Dawson, T. M., Golde, T. E., & Lagier-Tourenne, C. (2018). Animal models of neurodegenerative diseases. NATURE NEUROSCIENCE, 21(10), 1370-1379. doi:10.1038/s41593-018-0236-8
  30. De Marchi, F., Sarnelli, M. F., Solara, V., Bersano, E., Cantello, R., & Mazzini, L. (2019). Depression and risk of cognitive dysfunctions in amyotrophic lateral sclerosis. ACTA NEUROLOGICA SCANDINAVICA, 139(5), 438-445. doi:10.1111/ane.13073
  31. DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., . . . Rademakers, R. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. NEURON, 72(2), 245-256. doi:10.1016/j.neuron.2011.09.011
  32. Deshaies, J. E., Shkreta, L., Moszczynski, A. J., Sidibe, H., Semmler, S., Fouillen, A., . . . Vande Velde, C. (2018). TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. BRAIN, 141(5), 1320-1333. doi:10.1093/brain/awy062
  33. DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer's Alzheimer’s disease. Mol Neurodegener, 14(1), 32. doi:10.1186/s13024-019-0333-5
  34. DiProspero, N. A., Chen, E. Y., Charles, V., Plomann, M., Kordower, J. H., & Tagle, D. A. (2004). Early changes in Huntington's Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol, 33(5), 517-533. doi:10.1007/s11068-004-0514-8
  35. Dixit, A., Mehta, R., & Singh, A. K. (2019). Proteomics in Human Parkinson's Parkinson’s Disease: Present Scenario and Future Directions. Cell Mol Neurobiol, 39(7), 901-915. doi:10.1007/s10571-019-00700-9
  36. Dobson, R., & Giovannoni, G. (2019). Multiple sclerosis - a review. EUROPEAN JOURNAL OF NEUROLOGY, 26(1), 27-40. doi:10.1111/ene.13819
  37. Donnelly, D. P., Rawlins, C. M., DeHart, C. J., Fornelli, L., Schachner, L. F., Lin, Z., . . . Agar, J. N. (2019). Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. NATURE METHODS, 16(7), 587-594. doi:10.1038/s41592-019-0457-0
  38. Dorsey, E. R., & Bloem, B. R. (2018). The Parkinson Pandemic-A Call to Action. JAMA Neurol, 75(1), 9-10. doi:10.1001/jamaneurol.2017.3299
  39. Dorsey, E. R., Sherer, T., Okun, M. S., & Bloem, B. R. (2018). The Emerging Evidence of the Parkinson Pandemic. J Parkinsons Dis, 8(s1), S3-s8. doi:10.3233/jpd-181474
  40. Doty, R. L. (2012). Olfactory dysfunction in Parkinson disease. Nat Rev Neurol, 8(6), 329-339. doi:10.1038/nrneurol.2012.80
  41. Drummond, E., Nayak, S., Faustin, A., Pires, G., Hickman, R. A., Askenazi, M., . . . Wisniewski, T. (2017). Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's Alzheimer’s disease. Acta Neuropathol, 133(6), 933-954. doi:10.1007/s00401-017-1691-0
  42. Duan, W., Jiang, M., & Jin, J. (2014). Metabolism in HD: still a relevant mechanism? MOVEMENT DISORDERS, 29(11), 1366-1374. doi:10.1002/mds.25992
  43. Dujardin, S., Commins, C., Lathuiliere, A., Beerepoot, P., Fernandes, A. R., Kamath, T. V., . . . Hyman, B. T. (2020). Tau molecular diversity contributes to clinical heterogeneity in Alzheimer's Alzheimer’s disease. Nat Med, 26(8), 1256-1263. doi:10.1038/s41591-020-0938-9
  44. Dumitriu, A., Golji, J., Labadorf, A. T., Gao, B., Beach, T. G., Myers, R. H., . . . Latourelle, J. C. (2016). Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med Genomics, 9, 5. doi:10.1186/s12920-016-0164-y
  45. Dutta, D., Ali, N., Banerjee, E., Singh, R., Naskar, A., Paidi, R. K., & Mohanakumar, K. P. (2018). Low Levels of Prohibitin in Substantia Nigra Makes Dopaminergic Neurons Vulnerable in Parkinson's Parkinson’s Disease. Mol Neurobiol, 55(1), 804-821. doi:10.1007/s12035-016-0328-y
  46. Ehrnhoefer, D. E., Sutton, L., & Hayden, M. R. (2011). Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. NEUROSCIENTIST, 17(5), 475-492. doi:10.1177/1073858410390378
  47. Engelen-Lee, J., Blokhuis, A. M., Spliet, W. G. M., Pasterkamp, R. J., Aronica, E., Demmers, J. A. A., . . . Van Den Berg, L. H. (2017). Proteomic profiling of the spinal cord in ALS: decreased ATP5D levels suggest synaptic dysfunction in ALS pathogenesis. Amyotroph Lateral Scler Frontotemporal Degener, 18(3-4), 210-220. doi:10.1080/21678421.2016.1245757
  48. Erkkinen, M. G., Kim, M. O., & Geschwind, M. D. (2018). Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol, 10(4). doi:10.1101/cshperspect.a033118
  49. Faigle, W., Cruciani, C., Wolski, W., Roschitzki, B., Puthenparampil, M., Tomas-Ojer, P., . . . Martin, R. (2019). Brain Citrullination Patterns and T Cell Reactivity of Cerebrospinal Fluid-Derived CD4(+) T Cells in Multiple Sclerosis. Frontiers in Immunology, 10, 540. doi:10.3389/fimmu.2019.00540
  50. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. SCIENCE, 246(4926), 64-71. doi:10.1126/science.2675315
  51. Franco Bocanegra, D. K., Nicoll, J. A. R., & Boche, D. (2018). Innate immunity in Alzheimer's Alzheimer’s disease: the relevance of animal models? J Neural Transm (Vienna), 125(5), 827-846. doi:10.1007/s00702-017-1729-4
  52. Gao, Y., Liu, J., Wang, J., Liu, Y., Zeng, L. H., Ge, W., & Ma, C. (2022). Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's Alzheimer’s disease and the role of glial cells. Brain Pathol, e13047. doi:10.1111/bpa.13047
  53. García-Moreno, J. M., Martín de Pablos, A., García-Sánchez, M. I., Méndez-Lucena, C., Damas-Hermoso, F., Rus, M., . . . Fernández, E. (2013). May serum levels of advanced oxidized protein products serve as a prognostic marker of disease duration in patients with idiopathic Parkinson's Parkinson’s disease? Antioxid Redox Signal, 18(11), 1296-1302. doi:10.1089/ars.2012.5026
  54. Gauthier, S., Rosa-Neto, P., Morais, J. A., & Webster, C. (2021). World Alzheimer Report 2021: Journey through the diagnosis of dementia. Alzheimer's Alzheimer’s Disease International, 17-29.
  55. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. (2019). LANCET NEUROLOGY, 18(5), 459-480. doi:10.1016/s1474-4422(18)30499-x
  56. Griffiths, J. (2008). A brief history of mass spectrometry. ANALYTICAL CHEMISTRY, 80(15), 5678-5683. doi:10.1021/ac8013065
  57. Hampel, H., Mesulam, M. M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., . . . Khachaturian, Z. S. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer's Alzheimer’s disease. Brain, 141(7), 1917-1933. doi:10.1093/brain/awy132
  58. Han, M. H., Hwang, S. I., Roy, D. B., Lundgren, D. H., Price, J. V., Ousman, S. S., . . . Steinman, L. (2008). Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. NATURE, 451(7182), 1076-1081. doi:10.1038/nature06559
  59. Hardy, J. A., & Higgins, G. A. (1992). Alzheimer's Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256(5054), 184-185. doi:10.1126/science.1566067
  60. He, X., Memczak, S., Qu, J., Belmonte, J. C. I., & Liu, G. H. (2020). Single-cell omics in ageing: a young and growing field. Nat Metab, 2(4), 293-302. doi:10.1038/s42255-020-0196-7
  61. Hedl, T. J., San Gil, R., Cheng, F., Rayner, S. L., Davidson, J. M., De Luca, A., . . . Lee, A. (2019). Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Frontiers in Neuroscience, 13, 548. doi:10.3389/fnins.2019.00548
  62. Heemels, M. T. (2016). Neurodegenerative diseases. NATURE, 539(7628), 179. doi:10.1038/539179a
  63. Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol, 15(10), 565-581. doi:10.1038/s41582-019-0244-7
  64. Huff, T., Müller, C. S., Otto, A. M., Netzker, R., & Hannappel, E. (2001). beta-Thymosins, small acidic peptides with multiple functions. INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 33(3), 205-220. doi:10.1016/s1357-2725(00)00087-x
  65. Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., . . . Montine, T. J. (2012). National Institute on Aging-Alzheimer's Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer's Alzheimer’s disease. Alzheimers Dement, 8(1), 1-13. doi:10.1016/j.jalz.2011.10.007
  66. Ifergan, I., Kebir, H., Terouz, S., Alvarez, J. I., Lécuyer, M. A., Gendron, S., . . . Prat, A. (2011). Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. ANNALS OF NEUROLOGY, 70(5), 751-763. doi:10.1002/ana.22519
  67. Illarioshkin, S. N., Klyushnikov, S. A., Vigont, V. A., Seliverstov, Y. A., & Kaznacheyeva, E. V. (2018). Molecular Pathogenesis in Huntington's Huntington’s Disease. Biochemistry (Mosc), 83(9), 1030-1039. doi:10.1134/s0006297918090043
  68. International, A. s. D. (2019). World Alzheimer Report 2019: attitudes to dementia. Alzheimer’s Disease International, 13-16.
  69. Iridoy, M. O., Zubiri, I., Zelaya, M. V., Martinez, L., Ausín, K., Lachen-Montes, M., . . . Jericó, I. (2018). Neuroanatomical Quantitative Proteomics Reveals Common Pathogenic Biological Routes between Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 20(1). doi:10.3390/ijms20010004
  70. Johnson, E. B., Ziegler, G., Penny, W., Rees, G., Tabrizi, S. J., Scahill, R. I., & Gregory, S. (2021). Dynamics of Cortical Degeneration Over a Decade in Huntington's Huntington’s Disease. BIOLOGICAL PSYCHIATRY, 89(8), 807-816. doi:10.1016/j.biopsych.2020.11.009
  71. Johnson, E. C. B., Carter, E. K., Dammer, E. B., Duong, D. M., Gerasimov, E. S., Liu, Y., . . . Seyfried, N. T. (2022). Large-scale deep multi-layer analysis of Alzheimer's Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat Neurosci, 25(2), 213-225. doi:10.1038/s41593-021-00999-y
  72. Johnson, E. C. B., Dammer, E. B., Duong, D. M., Ping, L., Zhou, M., Yin, L., . . . Seyfried, N. T. (2020). Large-scale proteomic analysis of Alzheimer's Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med, 26(5), 769-780. doi:10.1038/s41591-020-0815-6
  73. Kametani, F., Obi, T., Shishido, T., Akatsu, H., Murayama, S., Saito, Y., . . . Hasegawa, M. (2016). Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. ScientIF-ic Reports, 6, 23281. doi:10.1038/srep23281
  74. Kerr, J. S., Adriaanse, B. A., Greig, N. H., Mattson, M. P., Cader, M. Z., Bohr, V. A., & Fang, E. F. (2017). Mitophagy and Alzheimer's Alzheimer’s Disease: Cellular and Molecular Mechanisms. Trends Neurosci, 40(3), 151-166. doi:10.1016/j.tins.2017.01.002
  75. Kim, G., Gautier, O., Tassoni-Tsuchida, E., Ma, X. R., & Gitler, A. D. (2020). ALS Genetics: Gains, Losses, and Implications for Future Therapies. NEURON, 108(5), 822-842. doi:10.1016/j.neuron.2020.08.022
  76. Kim, R., Kim, H. J., Kim, A., Jang, M., Kim, A., Kim, Y., . . . Jeon, B. (2018). Peripheral blood inflammatory markers in early Parkinson's Parkinson’s disease. J Clin Neurosci, 58, 30-33. doi:10.1016/j.jocn.2018.10.079
  77. Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer's Alzheimer’s disease. Alzheimers Dement (N Y), 4, 575-590. doi:10.1016/j.trci.2018.06.014
  78. Kitamura, Y., Kojima, M., Kurosawa, T., Sasaki, R., Ichihara, S., Hiraku, Y., . . . Oikawa, S. (2018). Proteomic Profiling of Exosomal Proteins for Blood-based Biomarkers in Parkinson's Parkinson’s Disease. Neuroscience, 392, 121-128. doi:10.1016/j.neuroscience.2018.09.017
  79. Kotelnikova, E., Kiani, N. A., Messinis, D., Pertsovskaya, I., Pliaka, V., Bernardo-Faura, M., . . . Villoslada, P. (2019). MAPK pathway and B cells overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(19), 9671-9676. doi:10.1073/pnas.1818347116
  80. Lachén-Montes, M., González-Morales, A., Iloro, I., Elortza, F., Ferrer, I., Gveric, D., . . . Santamaría, E. (2019). Unveiling the olfactory proteostatic disarrangement in Parkinson's Parkinson’s disease by proteome-wide profiling. NEUROBIOLOGY OF AGING, 73, 123-134. doi:10.1016/j.neurobiolaging.2018.09.018
  81. Laferrière, F., Maniecka, Z., Pérez-Berlanga, M., Hruska-Plochan, M., Gilhespy, L., Hock, E. M., . . . Polymenidou, M. (2019). TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. NATURE NEUROSCIENCE, 22(1), 65-77. doi:10.1038/s41593-018-0294-y
  82. Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559. doi:10.1186/1471-2105-9-559
  83. Lassmann, H., & Bradl, M. (2017). Multiple sclerosis: experimental models and reality. ACTA NEUROPATHOLOGICA, 133(2), 223-244. doi:10.1007/s00401-016-1631-4
  84. Liao, L., Cheng, D., Wang, J., Duong, D. M., Losik, T. G., Gearing, M., . . . Peng, J. (2004). Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem, 279(35), 37061-37068. doi:10.1074/jbc.M403672200
  85. Licker, V., & Burkhard, P. R. (2014). Proteomics as a new paradigm to tackle Parkinson’s disease research challenges. Translational Proteomics, 4-5, 1-17. doi:10.1016/j.trprot.2014.08.001
  86. Licker, V., Côte, M., Lobrinus, J. A., Rodrigo, N., Kövari, E., Hochstrasser, D. F., . . . Burkhard, P. R. (2012). Proteomic profiling of the substantia nigra demonstrates CNDP2 overexpression in Parkinson's Parkinson’s disease. J Proteomics, 75(15), 4656-4667. doi:10.1016/j.jprot.2012.02.032
  87. Licker, V., Kövari, E., Hochstrasser, D. F., & Burkhard, P. R. (2009). Proteomics in human Parkinson's Parkinson’s disease research. Journal of Proteomics, 73(1), 10-29. doi:10.1016/j.jprot.2009.07.007
  88. Licker, V., Turck, N., Kövari, E., Burkhardt, K., Côte, M., Surini-Demiri, M., . . . Burkhard, P. R. (2014). Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson's Parkinson’s disease pathogenesis. Proteomics, 14(6), 784-794. doi:10.1002/pmic.201300342
  89. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. NATURE, 443(7113), 787-795. doi:10.1038/nature05292
  90. Liu, D., Liu, C., Li, J., Azadzoi, K., Yang, Y., Fei, Z., . . . Yang, J. H. (2013). Proteomic analysis reveals differentially regulated protein acetylation in human amyotrophic lateral sclerosis spinal cord. PLoS One, 8(12), e80779. doi:10.1371/journal.pone.0080779
  91. Lontay, B., Kiss, A., Virág, L., & Tar, K. (2020). How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Huntington’s Disease? A Comprehensive Review. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 21(12). doi:10.3390/ijms21124282
  92. Ludwig, C., Gillet, L., Rosenberger, G., Amon, S., Collins, B. C., & Aebersold, R. (2018). Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Molecular Systems Biology, 14(8), e8126. doi:10.15252/msb.20178126
  93. Ly, L., Barnett, M. H., Zheng, Y. Z., Gulati, T., Prineas, J. W., & Crossett, B. (2011). Comprehensive tissue processing strategy for quantitative proteomics of formalin-fixed multiple sclerosis lesions. JOURNAL OF PROTEOME RESEARCH, 10(10), 4855-4868. doi:10.1021/pr200672n
  94. Maccarrone, G., Nischwitz, S., Deininger, S. O., Hornung, J., König, F. B., Stadelmann, C., . . . Weber, F. (2017). MALDI imaging mass spectrometry analysis-A new approach for protein mapping in multiple sclerosis brain lesions. J Chromatogr B Analyt Technol Biomed Life Sci, 1047, 131-140. doi:10.1016/j.jchromb.2016.07.001
  95. Martin, L., Latypova, X., & Terro, F. (2011). Post-translational modifications of tau protein: implications for Alzheimer's Alzheimer’s disease. Neurochem Int, 58(4), 458-471. doi:10.1016/j.neuint.2010.12.023
  96. Martin, W. R., Wieler, M., & Hanstock, C. C. (2007). Is brain lactate increased in Huntington's Huntington’s disease? JOURNAL OF THE NEUROLOGICAL SCIENCES, 263(1-2), 70-74. doi:10.1016/j.jns.2007.05.035
  97. Masrori, P., & Van Damme, P. (2020). Amyotrophic lateral sclerosis: a clinical review. EUROPEAN JOURNAL OF NEUROLOGY, 27(10), 1918-1929. doi:10.1111/ene.14393
  98. Mayo, S., Benito-León, J., Peña-Bautista, C., Baquero, M., & Cháfer-Pericás, C. (2021). Recent Evidence in Epigenomics and Proteomics Biomarkers for Early and Minimally Invasive Diagnosis of Alzheimer's Alzheimer’s and Parkinson's Parkinson’s Diseases. Curr Neuropharmacol, 19(8), 1273-1303. doi:10.2174/1570159x19666201223154009
  99. McArdle, A. J., & Menikou, S. (2021). What is proteomics? Arch Dis Child Educ Pract Ed, 106(3), 178-181. doi:10.1136/archdischild-2019-317434
  100. Mejzini, R., Flynn, L. L., Pitout, I. L., Fletcher, S., Wilton, S. D., & Akkari, P. A. (2019). ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Frontiers in Neuroscience, 13, 1310. doi:10.3389/fnins.2019.01310
  101. Milakovic, T., & Johnson, G. V. (2005). Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(35), 30773-30782. doi:10.1074/jbc.M504749200
  102. Mullin, S., & Schapira, A. (2013). α-Synuclein and mitochondrial dysfunction in Parkinson's Parkinson’s disease. MOLECULAR NEUROBIOLOGY, 47(2), 587-597. doi:10.1007/s12035-013-8394-x
  103. Murtaza, N., Uy, J., & Singh, K. K. (2020). Emerging proteomic approaches to identify the underlying pathophysiology of neurodevelopmental and neurodegenerative disorders. Molecular Autism, 11(1), 27. doi:10.1186/s13229-020-00334-5
  104. Neelagandan, N., Gonnella, G., Dang, S., Janiesch, P. C., Miller, K. K., Küchler, K., . . . Duncan, K. E. (2019). TDP-43 enhances translation of specific mRNAs linked to neurodegenerative disease. NUCLEIC ACIDS RESEARCH, 47(1), 341-361. doi:10.1093/nar/gky972
  105. Nicaise, A. M., Wagstaff, L. J., Willis, C. M., Paisie, C., Chandok, H., Robson, P., . . . Crocker, S. J. (2019). Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(18), 9030-9039. doi:10.1073/pnas.1818348116
  106. Nicoll, J. A. R., Bloom, T., Clarke, A., Boche, D., & Hilton, D. (2022). BRAIN UK: Accessing NHS tissue archives for neuroscience research. NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 48(2), e12766. doi:10.1111/nan.12766
  107. Olek, M. J. (2021). Multiple Sclerosis. ANNALS OF INTERNAL MEDICINE, 174(6), Itc81-itc96. doi:10.7326/aitc202106150
  108. Ortiz, G. G., Pacheco-Moisés, F. P., Macías-Islas, M., Flores-Alvarado, L. J., Mireles-Ramírez, M. A., González-Renovato, E. D., . . . Alatorre-Jiménez, M. A. (2014). Role of the blood-brain barrier in multiple sclerosis. ARCHIVES OF MEDICAL RESEARCH, 45(8), 687-697. doi:10.1016/j.arcmed.2014.11.013
  109. Perkel, J. M. (2021). Single-cell proteomics takes centre stage. NATURE, 597(7877), 580-582. doi:10.1038/d41586-021-02530-6
  110. Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A., & Patel, B. K. (2019). Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 12, 25. doi:10.3389/fnmol.2019.00025
  111. Qendro, V., Bugos, G. A., Lundgren, D. H., Glynn, J., Han, M. H., & Han, D. K. (2017). Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis. PROTEOMICS, 17(6). doi:10.1002/pmic.201600322
  112. Ratovitski, T., Chaerkady, R., Kammers, K., Stewart, J. C., Zavala, A., Pletnikova, O., . . . Ross, C. A. (2016). Quantitative Proteomic Analysis Reveals Similarities between Huntington's Huntington’s Disease (HD) and Huntington's Huntington’s Disease-Like 2 (HDL2) Human Brains. JOURNAL OF PROTEOME RESEARCH, 15(9), 3266-3283. doi:10.1021/acs.jproteome.6b00448
  113. Ratovitski, T., Chighladze, E., Arbez, N., Boronina, T., Herbrich, S., Cole, R. N., & Ross, C. A. (2012). Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis. CELL CYCLE, 11(10), 2006-2021. doi:10.4161/cc.20423
  114. Renton, A. E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J. R., . . . Traynor, B. J. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. NEURON, 72(2), 257-268. doi:10.1016/j.neuron.2011.09.010
  115. Riley, B. E., Gardai, S. J., Emig-Agius, D., Bessarabova, M., Ivliev, A. E., Schüle, B., . . . Johnston, J. A. (2014). Systems-based analyses of brain regions functionally impacted in Parkinson's Parkinson’s disease reveals underlying causal mechanisms. PLoS One, 9(8), e102909. doi:10.1371/journal.pone.0102909
  116. Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., . . . et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. NATURE, 362(6415), 59-62. doi:10.1038/362059a0
  117. Ross, C. A., Aylward, E. H., Wild, E. J., Langbehn, D. R., Long, J. D., Warner, J. H., . . . Tabrizi, S. J. (2014). Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol, 10(4), 204-216. doi:10.1038/nrneurol.2014.24
  118. Ross, C. A., Pantelyat, A., Kogan, J., & Brandt, J. (2014). Determinants of functional disability in Huntington's Huntington’s disease: role of cognitive and motor dysfunction. MOVEMENT DISORDERS, 29(11), 1351-1358. doi:10.1002/mds.26012
  119. Ross, C. A., & Tabrizi, S. J. (2011). Huntington's Huntington’s disease: from molecular pathogenesis to clinical treatment. LANCET NEUROLOGY, 10(1), 83-98. doi:10.1016/s1474-4422(10)70245-3
  120. Rüb, U., Seidel, K., Heinsen, H., Vonsattel, J. P., den Dunnen, W. F., & Korf, H. W. (2016). Huntington's Huntington’s disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. BRAIN PATHOLOGY, 26(6), 726-740. doi:10.1111/bpa.12426
  121. Sandi, D., Kokas, Z., Biernacki, T., Bencsik, K., Klivényi, P., & Vécsei, L. (2022). Proteomics in Multiple Sclerosis: The Perspective of the Clinician. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 23(9). doi:10.3390/ijms23095162
  122. Santra, M., Chopp, M., Zhang, Z. G., Lu, M., Santra, S., Nalani, A., . . . Morris, D. C. (2012). Thymosin β 4 mediates oligodendrocyte differentiation by upregulating p38 MAPK. GLIA, 60(12), 1826-1838. doi:10.1002/glia.22400
  123. Saudou, F., & Humbert, S. (2016). The Biology of Huntingtin. NEURON, 89(5), 910-926. doi:10.1016/j.neuron.2016.02.003
  124. Schönberger, S. J., Jezdic, D., Faull, R. L., & Cooper, G. J. (2013). Proteomic analysis of the human brain in Huntington's Huntington’s Disease indicates pathogenesis by molecular processes linked to other neurodegenerative diseases and to type-2 diabetes. J Huntingtons Dis, 2(1), 89-99. doi:10.3233/jhd-120044
  125. Selkoe, D. J. (1989). Molecular pathology of amyloidogenic proteins and the role of vascular amyloidosis in Alzheimer's Alzheimer’s disease. Neurobiol Aging, 10(5), 387-395. doi:10.1016/0197-4580(89)90072-9
  126. Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer's Alzheimer’s disease at 25 years. EMBO Mol Med, 8(6), 595-608. doi:10.15252/emmm.201606210
  127. Sen, M. K., Almuslehi, M. S. M., Shortland, P. J., Mahns, D. A., & Coorssen, J. R. (2021). Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 22(14). doi:10.3390/ijms22147377
  128. Shirasaki, D. I., Greiner, E. R., Al-Ramahi, I., Gray, M., Boontheung, P., Geschwind, D. H., . . . Yang, X. W. (2012). Network organization of the huntingtin proteomic interactome in mammalian brain. NEURON, 75(1), 41-57. doi:10.1016/j.neuron.2012.05.024
  129. Si, Q. Q., Yuan, Y. S., Zhi, Y., Tong, Q., Zhang, L., & Zhang, K. (2018). Plasma transferrin level correlates with the tremor-dominant phenotype of Parkinson's Parkinson’s disease. Neurosci Lett, 684, 42-46. doi:10.1016/j.neulet.2018.07.004
  130. Song, I. U., Chung, S. W., Kim, J. S., & Lee, K. S. (2011). Association between high-sensitivity C-reactive protein and risk of early idiopathic Parkinson's Parkinson’s disease. Neurol Sci, 32(1), 31-34. doi:10.1007/s10072-010-0335-0
  131. Sorolla, M. A., Reverter-Branchat, G., Tamarit, J., Ferrer, I., Ros, J., & Cabiscol, E. (2008). Proteomic and oxidative stress analysis in human brain samples of Huntington disease. FREE RADICAL BIOLOGY AND MEDICINE, 45(5), 667-678. doi:10.1016/j.freeradbiomed.2008.05.014
  132. Su, W., Chen, H. B., Li, S. H., & Wu, D. Y. (2012). Correlational study of the serum levels of the glial fibrillary acidic protein and neurofilament proteins in Parkinson's Parkinson’s disease patients. Clin Neurol Neurosurg, 114(4), 372-375. doi:10.1016/j.clineuro.2011.11.002
  133. Swarup, V., & Julien, J. P. (2011). ALS pathogenesis: recent insights from genetics and mouse models. Prog Neuropsychopharmacol Biol Psychiatry, 35(2), 363-369. doi:10.1016/j.pnpbp.2010.08.006
  134. Syed, Y. A., Zhao, C., Mahad, D., Möbius, W., Altmann, F., Foss, F., . . . Kotter, M. R. N. (2016). Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination. ACTA NEUROPATHOLOGICA, 131(2), 281-298. doi:10.1007/s00401-015-1521-1
  135. Tabrizi, S. J., Flower, M. D., Ross, C. A., & Wild, E. J. (2020). Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol, 16(10), 529-546. doi:10.1038/s41582-020-0389-4
  136. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., & Matsuo, T. J. R. C. i. M. S. (1988). Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2(8), 151-153.
  137. Taylor, J. P., Brown, R. H., Jr., & Cleveland, D. W. (2016). Decoding ALS: from genes to mechanism. NATURE, 539(7628), 197-206. doi:10.1038/nature20413
  138. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B., & Ciccarelli, O. (2018). Multiple sclerosis. LANCET, 391(10130), 1622-1636. doi:10.1016/s0140-6736(18)30481-1
  139. Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., & Nair, M. (2019). Alzheimer's Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine, 14, 5541-5554. doi:10.2147/ijn.S200490
  140. Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of Parkinson's Parkinson’s disease. Lancet Neurol, 20(5), 385-397. doi:10.1016/s1474-4422(21)00030-2
  141. Trist, B. G., Genoud, S., Roudeau, S., Rookyard, A., Abdeen, A., Cottam, V., . . . Double, K. L. (2022). Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. BRAIN. doi:10.1093/brain/awac165
  142. Umemura, A., Oeda, T., Yamamoto, K., Tomita, S., Kohsaka, M., Park, K., . . . Sawada, H. (2015). Baseline Plasma C-Reactive Protein Concentrations and Motor Prognosis in Parkinson Disease. PLoS One, 10(8), e0136722. doi:10.1371/journal.pone.0136722
  143. Umoh, M. E., Dammer, E. B., Dai, J., Duong, D. M., Lah, J. J., Levey, A. I., . . . Seyfried, N. T. (2018). A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Molecular Medicine, 10(1), 48-62. doi:10.15252/emmm.201708202
  144. van Es, M. A., Hardiman, O., Chio, A., Al-Chalabi, A., Pasterkamp, R. J., Veldink, J. H., & van den Berg, L. H. (2017). Amyotrophic lateral sclerosis. LANCET, 390(10107), 2084-2098. doi:10.1016/s0140-6736(17)31287-4
  145. Vassileff, N., Vella, L. J., Rajapaksha, H., Shambrook, M., Kenari, A. N., McLean, C., . . . Cheng, L. (2020). Revealing the Proteome of Motor Cortex Derived Extracellular Vesicles Isolated from Amyotrophic Lateral Sclerosis Human Postmortem Tissues. Cells, 9(7). doi:10.3390/cells9071709
  146. Villar-Conde, S., Astillero-Lopez, V., Gonzalez-Rodriguez, M., Villanueva-Anguita, P., Saiz-Sanchez, D., Martinez-Marcos, A., . . . Ubeda-Bañon, I. (2021). The Human Hippocampus in Parkinson's Parkinson’s Disease: An Integrative Stereological and Proteomic Study. J Parkinsons Dis, 11(3), 1345-1365. doi:10.3233/jpd-202465
  147. Walker, F. O., & Raymond, L. A. (2004). Targeting energy metabolism in Huntington's Huntington’s disease. LANCET, 364(9431), 312-313. doi:10.1016/s0140-6736(04)16739-1
  148. Walton, C., King, R., Rechtman, L., Kaye, W., Leray, E., Marrie, R. A., . . . Baneke, P. (2020). Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler, 26(14), 1816-1821. doi:10.1177/1352458520970841
  149. Wang, W., Zhao, F., Ma, X., Perry, G., & Zhu, X. (2020). Mitochondria dysfunction in the pathogenesis of Alzheimer's Alzheimer’s disease: recent advances. Mol Neurodegener, 15(1), 30. doi:10.1186/s13024-020-00376-6
  150. Wang, Y., & Mandelkow, E. (2016). Tau in physiology and pathology. Nat Rev Neurosci, 17(1), 5-21. doi:10.1038/nrn.2015.1
  151. Ward, M., Güntert, A., Campbell, J., & Pike, I. (2009). Proteomics for brain disorders--the promise for biomarkers. Annals of the New York Academy of Sciences, 1180, 68-74. doi:10.1111/j.1749-6632.2009.05018.x
  152. Wegrzynowicz, M., Holt, H. K., Friedman, D. B., & Bowman, A. B. (2012). Changes in the striatal proteome of YAC128Q mice exhibit gene-environment interactions between mutant huntingtin and manganese. JOURNAL OF PROTEOME RESEARCH, 11(2), 1118-1132. doi:10.1021/pr200839d
  153. Wesseling, H., Mair, W., Kumar, M., Schlaffner, C. N., Tang, S., Beerepoot, P., . . . Steen, J. A. (2020). Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer's Disease. Cell, 183(6), 1699-1713.e1613. doi:10.1016/j.cell.2020.10.029
  154. Wyss-Coray, T., & Rogers, J. (2012). Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med, 2(1), a006346. doi:10.1101/cshperspect.a006346
  155. Xiong, F., Ge, W., & Ma, C. (2019). Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer's Alzheimer’s disease. Alzheimers Dement, 15(3), 429-440. doi:10.1016/j.jalz.2018.10.006
  156. Xu, B., Xiong, F., Tian, R., Zhan, S., Gao, Y., Qiu, W., . . . Ma, C. (2016). Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank. EXPERIMENTAL GERONTOLOGY, 73, 31-41. doi:10.1016/j.exger.2015.11.016
  157. Xu, J., Patassini, S., Rustogi, N., Riba-Garcia, I., Hale, B. D., Phillips, A. M., . . . Unwin, R. D. (2019). Regional protein expression in human Alzheimer's Alzheimer’s brain correlates with disease severity. Commun Biol, 2, 43. doi:10.1038/s42003-018-0254-9
  158. Yamagishi, Y., Saigoh, K., Saito, Y., Ogawa, I., Mitsui, Y., Hamada, Y., . . . Kusunoki, S. (2018). Diagnosis of Parkinson's Parkinson’s disease and the level of oxidized DJ-1 protein. Neurosci Res, 128, 58-62. doi:10.1016/j.neures.2017.06.008
  159. Yates, J. R., Ruse, C. I., & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: approaches, advances, and applications. Annual Review of Biomedical Engineering, 11, 49-79. doi:10.1146/annurev-bioeng-061008-124934
  160. Zabel, C., Mao, L., Woodman, B., Rohe, M., Wacker, M. A., Kläre, Y., . . . Bates, G. P. (2009). A large number of protein expression changes occur early in life and precede phenotype onset in a mouse model for huntington disease. MOLECULAR & CELLULAR PROTEOMICS, 8(4), 720-734. doi:10.1074/mcp.M800277-MCP200
  161. Zhang, J., Zhang, Z. G., Morris, D., Li, Y., Roberts, C., Elias, S. B., & Chopp, M. (2009). Neurological functional recovery after thymosin beta4 treatment in mice with experimental auto encephalomyelitis. NEUROSCIENCE, 164(4), 1887-1893. doi:10.1016/j.neuroscience.2009.09.054
  162. Zou, Z. Y., Zhou, Z. R., Che, C. H., Liu, C. Y., He, R. L., & Huang, H. P. (2017). Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry, 88(7), 540-549. doi:10.1136/jnnp-2016-315018a

How to Cite

Chen, Yashuang, et al. “Advances in Human Brain Proteomics Analysis of Neurodegenerative Diseases”. Human Brain, vol. 1, no. 1, Sept. 2022, pp. 21-45, doi:10.37819/hb.001.001.0197.

HTML
367

Total
142

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Human Brain

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.