Google Flu Trendsand Mass Data: Extrapolated to Ebola?
DOI:
https://doi.org/10.37467/gka-revtechno.v5.465Keywords:
Data Journalism, Google Trends Flu, Spain, Ébola, ResearchAbstract
Millions of people surf the Internet through the Google search engine. This company leveraging in-training your users Google Flu Trends developed in 2008. This tool was created with the aim of collecting data for the incidence of influenza in a country with high precision. This application records queries that netizens through its search engine Google and the data obtained their own conclusions, as if from a study of epidemiology is involved. Three years later the development of this tool, in 2011, the information you offer data did not resemble reality. What had happened? The Data Journalism was failing. Many users who did not have the flu seeking information on the Internet and Google Flu Trends counted them how sick. With this paper is to analyze this tool andcompare their progress and results with Ebola disease.
References
Casacuberta, D. (2013).Innovación, Big Data y Epidemiología.Revista Iberoamericana de Argumentación, 7.
Cook, S., Conrad, C., Fowlkes, A.L., (2011). Assessing Google flu trends perfor-mance in the Uni-ted States during the 2009 influenza virus A (H1N1) pandemic. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023610
Fung, K. (2014). Google Flu Trends’ Failure Shows Good Data > Big Data. Harvard Business Review. Disponible el recurso online: https://hbr.org/2014/03/google-flu-trends-failure-shows-good-data-big-data/#signin
Ginsberg, J.; Mohebbi, M.H. (2009).Detecting influenza epidemics using search engine query data. Nature, 457(19). Disponible el recurso online: http://dx.doi.org/10.1038/nature07634
Jurado, E. (2015). Los errores de comunicación en la crisis del ébola.Cuadernos de Periodistas, 29.
Lazer, D., Kennedy, R., King, G. y Vespignani, A. (2014).The Parable of Google Flu: Traps in Big Data Analysis.Science, 343(6176), pp.1203–1205.
Pries, K.H.& Dunnigan, R. (2015). Big Data Analytics: A practical guide for managers. Boca Raton: CRC Press
Roncancio, G. E. (2009). Ayudas desde la red para el control de la epidemia. Infectio, 13(3), pp. 217-222. Retrieved March 23, 2015. Disponible el recurso online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012393922009000300009&lng=en&tlng=es.
Tascón, M. (2013). Introducción: Big Data. Pasado, presente y futuro. Revista Telos, 95.
Valdivia Pérez, A., Benito M. A., Escortell Mayr, E. (2010) ¿Se puede predecir la epidemia de gripemediante datos de búsquedas en Internet? Gac Sanit.
Viktor, MS. & Kenneth, C. (2013). Big data: arevolutionthatwill transformhowwe live,work, andthink.British: Hodderand Stoughton.
Downloads
Published
How to Cite
Issue
Section
License
Those authors who publish in this journal accept the following terms:
- Authors will keep the moral right of the work and they will transfer the commercial rights.
- After 1 year from publication, the work shall thereafter be open access online on our website, but will retain copyright.
- In the event that the authors wish to assign an Creative Commons (CC) license, they may request it by writing to publishing@eagora.org