The botanical image in the post-photographic era

How to face the biodiversity crisis? How can art contribute?

Authors

  • Ramón Casanova Rodríguez Universitat de Barcelona
  • Ricardo Guixà Frutos Universitat de Barcelona
  • Pilar Rosado Rodrigo Universitat de Barcelona

DOI:

https://doi.org/10.37467/revhuman.v11.4332

Keywords:

Generative art, Cameraless photography, Generative Adversarial Networks (GAN), Protophotography, Postphotography, Biodiversity

Abstract

This article is a review of the ability of photographic herbariums to establish experimental alliances with potential to help raise awareness and resolve the plant biodiversity crisis. It analyzes how the photographic medium, under the prism of artistic creation, can be erected as a revealing system, able to overcome the mere description and expand the cognitive limitations of our visual perception, revealing the complexity of the botanical universe through a deeper and poetic look at its physical nature.

References

Batchen, G. (2004). Arder en deseos. La concepción de la fotografía. Ed. Gustavo Gili.

Batchen, G., & Talbot, W. H. F. (2008). William Henry Fox Talbot. Amsterdam University Press.

Castelo, L., & Legido, T. (2020). Herbarios imaginados. Entre el arte y la ciencia. Ediciones Complutense.

Deleuze, G., & Guattari, F. (1992). Rizoma (Introducción). Pre-textos.

Foucault, M. (2007). Las palabras y las cosas. Una arqueología de las ciencias humanas. Siglo XXI Editores.

Gómez-Bellver, C., Ibañez, N., López-Pujol, J., Nualart, N., & Susanna, A. (2019). Las fotografías como complemento de los Especímenes: Implementación de photo voucher y fusion voucher, en el herbario BC. Libro de resúmenes de la XXIII bienal de la rsehn- barcelona.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warder-Farley, D., Ozair, S.; Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Adv. Neural Inf. Process. Syst. 2, 2672–2680.

Hong, Y., Hwang, U., Yoo, J., & Yoon, S. (2019). How generative adversarial networks and their variants work: An overview. ACM Comput. Surv. 52, 1–43.

Karras, T., Laine, S., & Aila, T. A (2019). Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4396–4405. [Google Scholar]

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of StyleGAN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 8107–8116. [Google Scholar]

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. https://arxiv.org/pdf/1511.06434.pdf .

Redondo M. & Figueras, E. (2021). Herbart. Confluències entre art i ciència. Edicions de la Universitat de Barcelona.

Riego, B. (1996). La nueva memoria: La fotografía frente a la descripción dibujada o la paradoja de Turpin. Papel Alpha, 2, 135-153.

Thompson, D.W. (1917). On Growth and Form. Cambridge University Press.

Published

2022-12-27

How to Cite

Casanova Rodríguez, R. ., Guixà Frutos, R., & Rosado Rodrigo, P. . (2022). The botanical image in the post-photographic era: How to face the biodiversity crisis? How can art contribute?. HUMAN REVIEW. International Humanities Review Revista Internacional De Humanidades, 15(6), 1–15. https://doi.org/10.37467/revhuman.v11.4332