Electrochemical determination of hydrazine by using MoS2 nanostructure modified gold electrode
DOI:
https://doi.org/10.37819/nanofab.007.190Keywords:
MoS2 nanostructure, Hydrazine sensing, Cyclic voltammetry, AmperometryAbstract
In this paper, MoS2 nanostructure was synthesized by using ammonium molybdate and thiourea as precursors through annealing in a tube furnace. The nanostructure was characterized for morphological, structural and elemental composition by using a field emission scanning electron microscope (FESEM), powder X-ray diffraction and energy-dispersive X-ray spectroscopy (EDS). The as-synthesized nanostructure was then immobilized on the gold electrode (working electrode) for the electrochemical detection of hydrazine. Cyclic voltammogram shows an intense peak at 22 µA, which proved the high electrocatalytic ability of the sensor. The strong electrocatalytic activity regarding the oxidation of hydrazine is ascribed to good electron transfer ability and high surface area of the nanoparticles. Further, the chronoamperometric study was conducted to estimate the sensitivity and the detection limit of the sensor. The sensor exhibited a detection limit and sensitivity of 196 nM and 5.71 µA/µM cm2 respectively. Promising results such as high electrical conductivity, lower detection limit and high sensitivity of the as-synthesized MoS2 nanostructure have proved its potential towards the electrochemical detection of hydrazine.
References
Yao L, Yang H, Chen Z, Qiu M, Hu B, Wang X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere. 2021;273:128576. https://doi.org/10.1016/j.chemosphere.2020.128576
Li MF, Liu YG, Zeng GM, Liu N, Liu SB. Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: a review. Chemosphere. 2019;226:360–380. https://doi.org/10.1016/j.chemosphere.2019.03.117
Kaur N, Khunger A, Wallen S, Kaushik A, Chaudhary GR, Varma RS. Advanced green analytical chemistry for environmental pesticide detection. Current Opinion in Green and Sustainable Chemistry. 2021:100488. https://doi.org/10.1016/j.cogsc.2021.100488
Shimizu W, Nakamura S, Sato T, Murakami Y. Creation of high-refractive-index amorphous titanium oxide thin films from low-fractal-dimension polymeric precursors synthesized by a sol–gel technique with a hydrazine monohydrochloride catalyst. Langmuir. 2012;28(33):12245-12255. https://doi.org/10.1021/la3015139
Deng Q, Slaný M, Zhang H, Gu X, Li Y, Du W, et al. Synthesis of alkyl aliphatic hydrazine and application in crude oil as flow improvers. Energies. 2021;14(15):4703. https://doi.org/10.3390/en14154703
Troyan JE. Properties, production, and uses of hydrazine. Ind. Eng. Chem. 1953;45(12):2608-2612. https://doi.org/10.1021/ie50528a020
Mäeorg U, Ragnarsson U. Synthesis, application and scope of a new protected hydrazine reagent. Tetrahedron Letters. 1998;39(7):681-684. https://doi.org/10.1016/S0040-4039(97)10634-7
Fontana MG. CORROSION Hydrazine for corrosion inhibition. Ind. Eng. Chem. 1955;47(10):81A-82A. https://doi.org/10.1021/ie50550a010
Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H, Miyazaki Y, et al. Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochemistry Communications. 2003;5(10):892-896. https://doi.org/10.1016/j.elecom.2003.08.015
Xing JH, Xia XJ, Peng WL, Fu QM, Chen J, Yu LJ, et al. Synthesis and bioactivity of novel insecticide ZJ0967 [J]. Chinese Journal of Pesticide Science. 2008:2. https://en.cnki.com.cn/Article_en/CJFDTotal-NYXB200802027.htm
Cardulla F. Hydrazine. Journal of Chemical Education. 1983;60(6):505. https://doi.org/10.1021/ed060p505
Byrkit GD, Michalek GA. Hydrazine in organic chemistry. Ind. Eng. Chem. 1950;42(9):1862-1875. https://doi.org/10.1021/ie50489a046
Integrated Risk Information System (IRIS). Hydrazine/Hydrazine Sulfate (CASRN 302-01-2), U.S.E.P.A. (EPA). 2021.https://iris.epa.gov/static/pdfs/0352_summary.pdf
Kirk RE, Othmer DF, Grayson M, Eckroth D. Kirk-Othmer Concise Encyclopedia of chemical technology. Wiley. 1985.https://www.semanticscholar.org/paper/Kirk-Othmer-Concise-encyclopedia-of-chemical-Kirk-Othmer/828891d73aa8a83d1d1ecac5ddfd186cbd35223c
Kumar R, Rana D, Umar A, Sharma P, Chauhan S, Chauhan MS. Ag-doped ZnO nanoellipsoids: potential scaffold for photocatalytic and sensing applications. Talanta. 2015;137:204-213. https://doi.org/10.1016/j.talanta.2015.01.039
Li B, Zhang Z, Wu M. Flow-injection chemiluminescence determination of captopril using on-line electrogenerated silver (II) as the oxidant. Microchemical Journal. 2001;70(2):85-91. https://doi.org/10.1016/S0026-265X(01)00090-X
McAdam K, Kimpton H, Essen S, Davis P, Vas C, Wright C, et al. Analysis of hydrazine in smokeless tobacco products by gas chromatography–mass spectrometry. Chemistry Central Journal. 2015;9(1):1-12. https://doi.org/10.1186/s13065-015-0089-0
Song L, Gao D, Li S, Wang Y, Liu H, Jiang Y. Simultaneous quantitation of hydrazine and acetylhydrazine in human plasma by high performance liquid chromatography-tandem mass spectrometry after derivatization with p-tolualdehyde. Journal of Chromatography B. 2017;1063:189-195. https://doi.org/10.1016/j.jchromb.2017.08.036
George M, Nagaraja KS, Balasubramanian N. Spectrophotometric determination of hydrazine. Talanta. 2008;75(1):27-31. https://doi.org/10.1016/j.talanta.2007.09.002
Fan J, Kong J, Feng S, Wang J, Peng P. Kinetic fluorimetric determination of trace hydrazine in environmental waters. International Journal of Environmental and Analytical Chemistry. 2006;86(13):995-1005. https://doi.org/10.1080/03067310600739475
Kumar R, Chauhan MS, Dar GN, Ansari SG, Wilson J, Umar A, et al. ZnO nanoparticles: Efficient material for the detection of hazardous chemical. Sensor Letters. 2014; 12(9):1393-1398. https://doi.org/10.1166/sl.2014.3358
Karthik R, Sasikumar R, Chen SM, Govindasamy M, Kumar JV, Muthuraj V. Green synthesis of platinum nanoparticles using quercus glauca extract and its electrochemical oxidation of hydrazine in water samples. Int. J. Electrochem. Sci. 2016;11:8245-8255. https://
Faisal M, Harraz FA, Al-Salami AE, Al-Sayari SA, Al-Hajry A, Al-Assiri MS. Polythiophene/ZnO nanocomposite-modified glassy carbon electrode as efficient electrochemical hydrazine sensor. Materials Chemistry and Physics. 2018;214:126-134. https://doi.org/10.1016/j.matchemphys.2018.04.085
Gwiazda M, Bhardwaj SK, Kijeńska-Gawrońska E, Swieszkowski W, Sivasankaran U, Kaushik A. Impedimetric and plasmonic sensing of collagen I using a half-antibody-supported, Au-modified, self-assembled monolayer system. Biosensors. 2021;11(7):227.https://www.mdpi.com/2079-6374/11/7/227#
Zhang R, Moon KS, Lin W, Wong CP. Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles. J. Mater. Chem. 2010;20(10):2018-2023. https://doi.org/10.1039/B921072E
Zhang C, Cui Y, Yang Y, Lu L, Yu S, Meng Z, et al. Highly conductive amorphous pentlandite anchored with ultrafine platinum nanoparticles for efficient pH‐universal hydrogen evolution reaction. Advanced Functional Materials. 2021:2105372. https://doi.org/10.1002/adfm.202105372
Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 2004;3(6):404-409. https://doi.org/10.1038/nmat1134
Lin Y, Connell JW. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale. 2012;4(22):6908-6939. https://doi.org/10.1039/C2NR32201C
Na J, Lee YT, Lim JA, Hwang DK, Kim GT, Choi WK, et al. Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano. 2014;8(11):11753-11762. https://doi.org/10.1021/nn5052376
Xue T, Bongu SR, Huang H, Liang W, Wang Y, Zhang F, et al. Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chem. Commun. 2020;56(51):7041-7044. https://doi.org/10.1039/D0CC01004A
Gibaja C, Rodriguez‐San‐Miguel D, Ares P, Gómez‐Herrero J, Varela M, Gillen R,et al. Few‐layer antimonene by liquid‐phase exfoliation. Angewandte Chemie. 2016;128(46):14557-14561. https://doi.org/10.1002/ange.201605298
Sharma PK, Ruotolo A, Khan R, Mishra YK, Kaushik NK, Kim NY, Kaushik AK. Perspectives on 2D-borophene flatland for smart bio-sensing. Materials Letters. 2022;308:131089. https://doi.org/10.1016/j.matlet.2021.131089
Khunger A, Kaur N, Mishra YK, Chaudhary GR, Kaushik A. Perspective and prospects of 2D MXenes for smart biosensing. Materials Letters. 2021;304:130656. https://doi.org/10.1016/j.matlet.2021.130656
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using graphene-based biosensors to detect dopamine for efficient parkinson’s disease diagnostics. Biosensors. 2021;11(11):433. https://doi.org/10.3390/bios11110433
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. Nanotechnology. 2021;32(50):502001. https://iopscience.iop.org/article/10.1088/1361-6528/ac1bdb/meta
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322-1331. https://doi.org/10.1021/nn204153h
Rathee G, Bartwal G, Rathee J, Mishra YK, Kaushik A, Solanki PR. Emerging multi‐model zirconia nanosystems for high‐performance biomedical applications. Advanced NanoBiomed Research. 2021:2100039. https://doi.org/10.1002/anbr.202100039
Singh A, Kaushik A, Dhau JS, Kumar R. Exploring coordination preferences and biological applications of pyridyl-based organochalcogen (Se, Te) ligands. Coordination Chemistry Reviews. 2022;450:214254. https://doi.org/10.1016/j.ccr.2021.214254
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem. Soc. Rev. 2021. https://doi.org/10.1039/D0CS01138J
Sen K, Ali S, Singh D, Singh K, Gupta N. Development of metal free melamine modified graphene oxide for electrochemical sensing of epinephrine. FlatChem. 2021;30:100288. https://doi.org/10.1016/j.flatc.2021.100288
Gusakova J, Wang X, Shiau LL, Krivosheeva A, Shaposhnikov V, Borisenko V, et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ‐2e method). Physica Status Solidi (a). 2017;214(12):1700218. https://doi.org/10.1002/pssa.201700218
Lin L, Zhang S, Allwood DA. Transition Metal Dichalcogenides for Energy Storage Applications. In two dimensional transition metal dichalcogenides. Springer, Singapore. 2019:173-201. https://doi.org/10.1007/978-981-13-9045-6_6
Li H, Lu G, Yin Z, He Q, Li H, Zhang Q,et al. Optical identification of single‐and few‐layer MoS2 sheets. Small. 2012;8(5):682-686. https://doi.org/10.1002/smll.201101958
Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters. 2010;105(13):136805. https://doi.org/10.1103/PhysRevLett.105.136805
Wei XL, Zhang H, Guo GC, Li XB, Lau WM, Liu LM. Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS2. J. Mater. Chem. A. 2014;2(7):2101-2109. https://doi.org/10.1039/C3TA13659K
Hui YY, Liu X, Jie W, Chan NY, Hao J, Hsu YT, et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano. 2013;7(8):7126-7131. https://doi.org/10.1021/nn4024834
Liu F, Zhou J, Zhu C, Liu Z. Electric field effect in two‐dimensional transition metal dichalcogenides. Advanced Functional Materials. 2017;27(19):1602404. https://doi.org/10.1002/adfm.201602404
Tontini G, Semione GD, Bernardi C, Binder R, de Mello JD, Drago V. Synthesis of nanostructured flower-like MoS2 and its friction properties as additive in lubricating oils. Industrial Lubrication and Tribology. 2016. http://dx.doi.org/10.1108/ILT-12-2015-0194
Mehta SK, Singh K, Umar A, Chaudhary GR, Singh S. Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles. Electrochimica Acta. 2012;69:128-133. https://doi.org/10.1016/j.electacta.2012.02.091
Kumar R, Rana D, Umar A, Sharma P, Chauhan S, Chauhan MS. Iron-doped ZnO nanoparticles as potential scaffold for hydrazine chemical sensor. Sensor Letters. 2014;12(8):1273-1278. https://doi.org/10.1166/sl.2014.3354
Mehta SK, Singh K, Umar A, Chaudhary GR and Singh S. Well-crystalline α-Fe2O3 nanoparticles for hydrazine chemical sensor application. Science of Advanced Materials. 2011;3(6):962-967. https://doi.org/10.1166/sam.2011.1244
Raoof JB, Ojani R, Jamali F, Hosseini SR. Electrochemical detection of hydrazine using a copper oxide nanoparticle modified glassy carbon electrode. Caspian J. Chem. 2012;1(1):73-85. http://caschemistry.journals.umz.ac.ir/article_291_8949986e9d8ef024dbdcbc69096dc867.pdf
Feng F, Ma Z. Sensitive electrochemical detection of hydrazine based on hollow core-satellite hZnS@ Au nanoparticles. Sensors and Actuators B: Chemical. 2016;232:9-15. https://doi.org/10.1016/j.snb.2016.03.127
Lee JY, Nguyen TL, Park JH, Kim BK. Electrochemical detection of hydrazine using poly (dopamine)-modified electrodes. Sensors. 2016;16(5):647. https://doi.org/10.3390/s16050647
Siangproh W, Chailapakul O, Laocharoensuk R, Wang J. Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta. 2005;67(5):903-907. https://doi.org/10.1016/j.talanta.2005.04.024
Zhang J, Gao W, Dou M, Wang F, Liu J, Li Z, Ji J. Nanorod-constructed porous Co3O4 nanowires: highly sensitive sensors for the detection of hydrazine. Analyst. 2015;140(5):1686-1692. https://doi.org/10.1039/C4AN02111H
Yi Q, Niu F, Yu W. Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films. 2011;519(10):3155-3161. https://doi.org/10.1016/j.tsf.2010.12.241
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Dharmender Singh Rana, Nagesh Thakur, Sourbh Thakur, Dilbag Singh
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Authors retain copyright over the materials published under an Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license.