Drying kinetics of pickled jalapeño pepper (Capsicum annuum L.)
Secado de una variedad de Capsicum
Keywords:
Capsicum annuum L., pickling, drying, effective diffusivity, activation energy, soluble solids, vitamin CAbstract
Pickled jalapeño pepper (Capsicum annuum L.) was dried in hot air at 70°C, 50°C, and 35°C, and in a no-frost refrigeration chamber (10°C); finding the drying kinetic curves, the drying time (19 h to 744 h), high relationship between moisture rate and drying time and between temperature and drying time; effective diffusivity (6.59E-11 m2.s-1 and 1.2176E-9 m2.s-1), activation energy (39.90 kJ/mol), soluble solids, pH, and vitamin C retention of 133% at 10°C but losing at least 50% of vitamin C by drying with hot air.
References
Adak, N., Heybeli, N., y Ertekin, C. (2017). Infrared drying of strawberry. Food chemistry, 219, 109-116. https://doi.org/10.1016/j.foodchem.2016.09.103
Ali, M., Yusof, Y., Chin, N., y Ibrahim, M. (2017). Processing of Moringa leaves as natural source of nutrients by optimization of drying and grinding mechanism. Food Process Engineering, 40 (6), e12583. https://doi.org/10.1111/jfpe.12583
Alvarez, E., Contreras, F., Rodrigo, J., De la Rosa, L., García, J., y Núñez, J. (2019). CINÉTICA DE SECADO Y EFECTO DE LA TEMPERATURA SOBRE LAS CARACTERÍSTICAS FÍSICAS Y COMPUESTOS FENÓLICOS DE CHILE JALAPEÑO ROJO (Capsicum annuum L.). Biotecnia, 21(1). https://doi.org/https://doi.org/10.18633/biotecnia.v21i1.877
AOAC International. (2000). Official methods of analysis. 17th ed. Gaithersburg, MD: AOAC International. of AOAC International.
Aregbesola, O. A., Ogunsina, B. ., Sofolahan, A. E., & Chime, N. N. (2015). Mathematical modeling of thin layer drying characteristics of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal, 33(1), 83–89. https://doi.org/10.1016/J.NIFOJ.2015.04.012
Ayadi, M., Mabrouk, S. Ben, Zouari, I., & Bellagi, A. (2014). Kinetic study of the convective drying of spearmint. Journal of the Saudi Society of Agricultural Sciences, 13(1), 1–7. https://doi.org/10.1016/J.JSSAS.2013.04.004
Bassey, E. J., Cheng, J.-H., & Sun, D.-W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112, 137–148. https://doi.org/10.1016/j.tifs.2021.03.045
Cao, Z. Z., Zhou, L. Y., Bi, J. F., Yi, J. Y., Chen, Q. Q., Wu, X. Y., Zheng, J. K., & Li, S. R. (2016). Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study. Journal of the Science of Food and Agriculture, 96(10), 3596–3603. https://doi.org/10.1002/JSFA.7549
Chen, D., Xing, B., Yi, H., Li, Y., Zheng, B., Wang, Y. (2020). Effects of different drying methods on appearance, microstructure, bioactive compounds and aroma compounds of saffron (Crocus sativus L.). LWT, 120,108913. https://doi.org/10.1016/j.lwt.2019.108913
Crowley, S.V. and O’Mahony, J.A. (2016). Drying: effect on Nutrients, Composition and Health. In Encyclopedia of Food Health (pp. 439–445).
Darvishi, H., Asl, A. R., Asghari, A., Azadbakht, M., Najafi, G., & Khodaei, J. (2014). Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13(2), 130–138. https://doi.org/10.1016/J.JSSAS.2013.03.002
Deng, L. Z., Yang, X. H., Mujumdar, A. S., Zhao, J. H., Wang, D., Zhang, Q., Wang, J., Gao, Z. J., & Xiao, H. W. (2018). Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Drying Technology, 36(8), 893–907. https://doi.org/10.1080/07373937.2017.1361439
Dufera, L., Hofacker, W., Esper, A., & Hensel, O. (2021). Physicochemical quality of twin layer solar tunnel dried tomato slices. Heliyon, 7(5), e7127. https://www.sciencedirect.com/science/article/pii/S2405844021012305
Guo, Y., Wu, B., Guo, X., Ding, F., Pan, Z., & M, H. (2020). Effects of power ultrasound enhancement on infrared drying of carrot slices: Moisture migration and quality characterizations. LWT, 126, 109312. https://doi.org/10.1016/j.lwt.2020.109312
Hidar, N., Ouhammou, M., Mghazli, S., Idlimam, A., Hajjaj, A., Bouchdoug, M., Jaouad, A., & Mahrouz, M. (2020). The impact of solar convective drying on kinetics, bioactive compounds and microstructure of stevia leaves. Renewable Energy, 161, 1176–1183. https://doi.org/10.1016/J.RENENE.2020.07.124
Hopkins, C. Toma, J. y Valdivia, E. (2018). Planeamiento estratégico para la industria arequipeña del ají 2017 – 2027 [Repositorio de la Pontificia Universidad Católica de Lima]. https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/11950
Huang, X., Li, W., Wang, Y., & Wan, F. (2021). Drying characteristics and quality of Stevia rebaudiana leaves by far-infrared radiation. LWT, 140, 110638. https://doi.org/10.1016/J.LWT.2020.110638
Iglesias, R., Grimaldi, R. V., Villanueva, B. E., Hernández, J. M., López, P., & Lastres, O. (2018). Cinética de secado de Moringa oleifera. Revista Mexicana de Ciencias Agrícolas, 9(5), 935–947. https://doi.org/10.29312/REMEXCA.V9I5.1503
Jeevarathinam, G., Pandiselvam, R., Pandiarajan, T., Preetha, P., Balakrishnan, M., Thirupathy, V., & Kothakota, A. (2021). Infrared assisted hot air dryer for turmeric slices: Effect on drying rate and quality parameters. LWT,Food Science and Technology Elsevier,144,pp.111258. https://www.sciencedirect.com/science/article/pii/S0023643821004114
Jorge, A., Ferreira, W., Silva, L., de Oliveira, D., y Resendre, O. (2021). Drying kinetics of ‘gueroba’ (Syagrus oleracea) fruit pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(1), 23–29. https://doi.org/10.1590/1807-1929/agriambi.v25n1p23-29
Keneni, Y. G., Hvoslef-Eide, A. K., & Marchetti, J. M. (2019). Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial Crops and Products, 132, 12–20. https://doi.org/10.1016/J.INDCROP.2019.02.012
Kosasih, E. A., Zikri, A., & Dzaky, M. I. (2020). Effects of drying temperature, airflow, and cut segment on drying rate and activation energy of elephant cassava. Case Studies in Thermal Engineering, 19, 100633. https://doi.org/10.1016/j.csite.2020.100633
Loizzo, M. R., Pugliese, A., Bonesi, M., Menichini, F., & Tundis, R. (2015). Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: A comparison between fresh and processed peppers. LWT - Food Science and Technology,64(2), 623-631. DOI:10.1016/j.lwt.2015.06.042
Martins, A. F. L., Vieira, É. N. R., Leite Júnior, B. R. C., & Ramos, A. M. (2022). Use of ultrasound and ethanol to improve the drying of yacon potato (Smallanthus sonchifolius): Effect of chemical and thermal bleaching. LWT, 162. https://doi.org/10.1016/J.LWT.2022.113448
Mendoza, L. (2013). Propiedades fisicoquímicas y antioxidantes del chile jalapeño (Capsicum annuum var annuum) fresco y seco. Universidad de Veracruz. https://cdigital.uv.mx/bitstream/handle/123456789/46807/MendozaSanchezLiliana.pdf;jsessionid=D8CB408D7472D63B02679FA756FF46ED?sequence=2
Mohammed, S., Edna, M., & Siraj, K. (2020). The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: A case of mangoes and pineapples. Heliyon, 6(6), e04163–e04172. https://doi.org/10.1016/j.heliyon.2020.e04163
Moreno-Escamilla, J. O., de la Rosa, L. A., López-Díaz, J. A., Rodrigo-García, J., Núñez-Gastélum, J. A., & Alvarez-Parrilla, E. (2015). Effect of the smoking process and firewood type in the phytochemical content and antioxidant capacity of red Jalapeño pepper during its transformation to chipotle pepper. Food Research International, 76, 654–660. https://doi.org/10.1016/J.FOODRES.2015.07.031
NMX-F-121-1982. (1982). Alimentos para humanos- envasados. Google Académico. DIRECCIÓN GENERAL DE NORMAS. https://media.gotomexico.today/reglament/nmx-f-121-1982.pdf
Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2018). Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 54(10), 2917–2933. https://doi.org/10.1007/S00231-018-2338-Y
Perez, M., Saavedra, C., Aquino, W., Lázaro, W., y Jaimes, O. (2019). Parámetros de calidad de postcosecha en pimiento páprika y chile guajillo (Capsicum annuum l.), valle Santa, Perú. Magisterpub.Com. https://magisterpub.com/ojs/index.php/msj/article/view/49
Ren, Z., Yu, X., Yagoub, A. E. G. A., Fakayode, O. A., Ma, H., Sun, Y., & Zhou, C. (2021). Combinative effect of cutting orientation and drying techniques (hot air, vacuum, freeze and catalytic infrared drying) on the physicochemical properties of ginger (Zingiber officinale Roscoe). LWT, 144. https://doi.org/10.1016/J.LWT.2021.111238
Ringeisen, B., & Barrett, D. S. P. (2014). Concentrated solar drying of tomatoes. Energy for Sustainable Development, 19, 47–55. http://dx.doi.org/10.1016/j.esd.2013.11.006
Rochín-Wong, C., Gamez, N., Montoya, L., y Medina, L. (2013). Efecto de los procesos de secado y encurtido sobre la capacidad antioxidante de los fitoquímicos del chiltepín (Capsicum annuum L. var. glabriusculum). Scielo.Org.Mx. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=s1665-27382013000200004
Roman, M. C., Fabani, M. P., Luna, L. C., Feresin, G. E., Mazza, G., & Rodriguez, R. (2020). Convective drying of yellow discarded onion (Angaco INTA): Modelling of moisture loss kinetics and effect on phenolic compounds. Information Processing in Agriculture, 7(2), 333–341. https://doi.org/10.1016/J.INPA.2019.07.002
Sabares, H. (2021). Advanced drying technologies of relevance in the... - Google Académico. CSIRO Agriculture and Food, 64–81. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=advanced+drying+technologies+of+relevance+in+the+food+industry&btnG=
Salehi, F., & Kashaninejad, M. (2018). Modeling of moisture loss kinetics and color changes in the surface of lemon slice during the combined infrared-vacuum drying. Information Processing in Agriculture, 5(4), 516–523. https://doi.org/10.1016/J.INPA.2018.05.006
Sinisgalli, C., Faraone, I., Vassallo, A., Caddeo, C., Bisaccia, F., Armentano, M., Milella, L., & Ostuni, A. (2020). Phytochemical Profile of Capsicum annuum L. cv Senise, Incorporation into Liposomes, and Evaluation of Cellular Antioxidant Activity. Antioxidants, 9(5),428-439. https://doi.org/10.3390/antiox9050428
Turham, M. Turhan, K. Sahbaz, F. (2007). DRYING KINETICS OF RED PEPPER. Journal of Food Processing and Preservation, 21(3), 209–223. https://doi.org/10.1111/j.1745-4549.1997.tb00777.x
Vega, A., Andrés, A., y Fito, P. (2005). Modelado de la Cinética de Secado del Pimiento Rojo (Capsicum annuum L. cv Lamuyo). Información tecnológica, 16(6). https://doi.org/10.4067/S0718-07642005000600002
Vijayan, S., Arjunan, T., & Kumar, A. (2020). Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renewable Energy, 146(february), 2210–2223. https://doi.org/10.1016/j.renene.2019.08.066
Wu, B., Guo, X., Guo, Y., Ma, H., & Zhou, C. (2021). Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure. Food Chemistry, 358, 129845. https://doi.org/10.1016/J.FOODCHEM.2021.129845
Younis, M., Abdelkarim, D., & Zein El-Abdein, A. (2018). Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi Journal of Biological Sciences, 25(2), 332–338. https://doi.org/10.1016/J.SJBS.2017.06.011