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Abstract 

Thalamic infarction can result in a diverse array of symptoms, including motor and sensory deficits, 

memory and attention difficulties, and alterations in mood and behavior; these symptoms are collectively 

referred to as thalamic infarction syndrome. The neural mechanisms underlying these symptoms are not 

yet fully understood, hampering the development of effective and individualized treatments. The current 

understanding of the pathology of thalamic infarction syndrome is mainly based on conventional 

computed tomography/magnetic resonance imaging scans, which reveal blood supply to various nuclei 

groups and clinical features. Thalamic infarction syndrome can be categorized into four groups according 

to the affected territory and associated vascular syndrome. Recent advancements in neuroimaging 

techniques, which enable the precise identification of affected pivotal thalamic subnuclei, altered brain 

structures, white matter pathway integrity, abnormal neural activity, and maladaptive states of brain 

networks, can enhance our understanding of the clinical mechanisms and inform the development of 

more effective therapeutic strategies. This review summarizes research on the pathological neural 

mechanisms of thalamic infarction syndrome and highlights future directions. 
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Introduction 

As a subtype of ischemic stroke, which is one of the leading causes of mortality and long-term disability 

worldwide [Wu et al., 2019], thalamic infarction accounts for 11% of posterior circulation infarcts and 

3–4% of cerebral ischemic events [Gurley & Edlow, 2019; Saez de Ocariz et al., 1996] and represents a 

common and complex clinical entity. 

The thalamus, which comprises several functional nuclei, plays an important role in a variety of functions, 

such as regulating sensory information; controlling motor signals; managing arousal, alertness, and 

attention; and supporting certain cognitive processes [Annoni et al., 2003; Emmanuel Carrera, 2006; 

Schmahmann, 2003; Sieveritz & Raghavan, 2021; Van Der Werf et al., 1999]. Its most critical role is 

serving as a relay center for the exchange of information between the cortex and other parts of the central 

nervous system (CNS) [H, 1874; Saez de Ocariz et al., 1996; Schmahmann, 2003]. According to 

conventional neuroimaging techniques (computed tomography angiography; digital subtraction 
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angiography), the thalamus is supplied by four major vascular territories, each preferentially providing 

blood to specific groups of nuclei. This distinct pattern of blood supply to the thalamus has important 

implications for the development of a vascular syndrome after thalamic infarction [Emmanuel Carrera, 

2006; H, 1874; Saez de Ocariz et al., 1996; Schmahmann, 2003]. Depending on the affected supplying 

arteries and insulted nuclei, damage to the thalamus can cause a variety of clinical syndromes, including 

hemisensory deficits, hemiparesis, refractory central neuropathic pain, hemispatial neglect, neuro-

ophthalmologic defects (such as visual field loss), and cognitive or neuropsychological impairments 

[Castaigne et al., 1981; Emmanuel Carrera, 2006; Saez de Ocariz et al., 1996; Schmahmann, 2003], all 

of which can have a profound impact on personal quality of life. 

Given the unsatisfactory effects of conventional drug therapy on clinical symptoms and the lack of more 

effective individualized therapeutic methods, elucidating the neural mechanisms underlying these 

syndromes is crucial for developing more effective and targeted treatments [Bogousslavsky et al., 1988; 

Hosomi et al., 2015; Klit et al., 2009; Wu et al., 2019; C. Ye et al., 2022; Chen Ye et al., 2022]. Advanced 

neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) [Bonkhoff et al., 2020, 

2021; He et al., 2021; Salvalaggio et al., 2020; Wang et al., 2021], diffusion tensor imaging (DTI) [Chen 

et al., 2019; Jang et al., 2019; Li et al., 2011; Nemati et al., 2022] and positron emission tomography 

(PET) [Dieterich et al., 2005; Dieterich & Brandt, 2008; Kopelman, 2015; Rudolphi-Solero et al., 2022; 

Stenset et al., 2007; Weder et al., 1994; Willoch et al., 2004], have made important contributions to our 

understanding of these mechanisms. Thalamic infarction can lead to structural and functional changes in 

the brain, including altered white matter integrity [Chuo Li, 2011; Krause et al., 2012], cortical 

reorganization [He et al., 2021; Krause et al., 2014; Wang et al., 2021], and even brain network 

dysfunction [Favaretto et al., 2022; He et al., 2021; Hosomi et al., 2015; Wang et al., 2021]. These 

changes can affect both adjacent and distant brain regions, such as the basal ganglia (motor pathways) 

[Favaretto et al., 2022; Wang et al., 2021], prefrontal cortex [Krause et al., 2014], sensory pathways [He 

et al., 2021; Wang et al., 2021] and even vision pathways [Holly Bridge, 2011; Millington et al., 2014; 

Chen Ye et al., 2022], all of which may result in a wide range of clinical symptoms following thalamic 

infarction. As a result, there has been growing interest in developing neuroimaging-based targeted 

therapies for individuals affected by thalamic infarction [Elias et al., 2020; Guo et al., 2022; Hosomi et 

al., 2015]. One promising approach is the use of neuromodulatory techniques to enhance the function of 

undamaged brain regions and to promote plasticity in damaged regions, particularly in central poststroke 

pain patients after thalamic infarction [Elias et al., 2020; Guo et al., 2022; Hosomi et al., 2015; Urits et 

al., 2020]. 

In this review, we briefly summarize the patterns of blood supply to the thalamus and corresponding 

vascular syndromes according to conventional brain imaging techniques and outline progress in 

understanding the pathological mechanisms of clinical syndromes and the neurobiology underlying 

stroke recovery after thalamic infarction using advanced neuroimaging techniques. Neural mechanism-

based targeted therapeutic options and future directions for studying thalamic infarction are proposed. 

 

Thalamic vascular syndrome by conventional neuroimaging techniques 

As first reported by Duret [H, 1874] and Foix et al., [1925], the blood supply to the thalamus mainly 

comprises four major arteries [Bogousslavsky et al., 1986, 1988; Castaigne et al., 1981; Clarke et al., 

1994; Ghika-Schmid & Bogousslavsky, 2000; Graff-Radford et al., 1984, 1985; Tatu et al., 1998; von 

Cramon et al., 1985], including the tuberothalamic artery, inferolateral artery, paramedian artery, and 

posterior choroidal artery (Figure 1A and B). As each vessel supplies specific nuclei groups, combining 
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clinical symptoms and lesion locations (according to conventional brain scanning, CT, or MRI) has been 

proposed as a method of diagnosing thalamic infarction syndrome in clinical practice [Schmahmann, 

2003]. These distinct supply patterns can be summarized as four standard territories (Figure 1C) and 

three variants as follows [Emmanuel Carrera, 2006; Schmahmann, 2003]: 

1. Anterior territory infarction 

The anterior portion of the thalamus is supplied by the tuberothalamic artery, which is also known as the 

anterior thalamoperforating artery [Castaigne et al., 1981; Graff-Radford et al., 1984] or polar artery [G, 

1976; Percheron, 1973]. The tuberothalamic artery arises from the middle third of the posterior 

communicating artery (PComm), and the clinical features of this infarction are characterized by severe 

and widespread neuropsychological abnormalities. During the early stages of infarction in this area, one 

may observe varying degrees of consciousness and silence. As the condition progresses, persistent 

personality changes can occur, including disorientation in time and space, apathy, and lack of self-

awareness. Emotional disruptions may also be present. Other common symptoms of anterior thalamic 

infarction include difficulty [Foix, 1925] forming new memories, language impairment (difficulty 

speaking and articulating words), and dysarthria, which is related to the connection with the mammillary 

bodies in the hippocampus. 

2. Paramedian territory infarction 

This area is supplied by the paramedian artery, which is also known as the thalamoperforating pedicle or 

thalamoperforating artery [Foix, 1925]. It branches off from the P1 segment of the posterior cerebral 

artery (PCA) or the interpeduncular segment and passes through the posterior perforated substance. 

Approximately 1/3 of infarcts in these territories occur bilaterally, as the left and right vessel branches 

originate from the same trunk, referred to as type B artery of Percheron. The paramedian region 

encompasses parts of the anterior thalamus, medial and ventral thalamus, and part of the interlamellar 

area. The nuclei supplied by this artery include the reticular, limbic, effector, conjunctive, specific sensory, 

and lamella nuclei. Given the numerous nuclei in this region, the symptoms of infarction can include 

visual impairment, hemiparesis, memory loss, and dyskinetic mutism caused by ischemia of the midbrain 

reticular formation, posterior hypothalamus, mammillary body, and/or anteromedial nuclei of the 

thalamus. 

3. Inferolateral territory infarction 

The thalamic geniculate artery, which arises from the P2 branch of the PCA, supplies this region and is 

located posterior to the PComm. Infarction of the lateral hypothalamic artery can result in thalamic pain 

syndrome, which is primarily characterized by intractable pain that is not alleviated by pain medications, 

potentially due to the dissociation of thalamic and cortical inhibition. This pain can have an immediate 

or delayed onset and affects approximately 80% of patients with infarctions in this area. Other symptoms 

of thalamic pain syndrome, include sensory loss and mild hemiparesis (sensorimotor stroke). Sensory 

disturbances can encompass all modalities, and pure sensory strokes can also occur. 

4. Posterior territory infarction 

This region is supplied by the posterior choroidal artery, which arises from the P2 segment of the PCA 

and comprises a group of small vessels. Reports on infarctions in this area are scarce. According to the 

existing data, the most common symptom is quadrant blindness, which can be accompanied by loss of 

lateral sensation, aphasia, and memory impairment. A distinctive manifestation of posterior choroidal 

artery infarction is the ocular motor disturbance, which is relatively rare and not specific to thalamic 

infarction. Patients may also experience a complex hyperkinetic syndrome with a delayed onset, which 

can include ataxia, tremor, dystonia, myoclonus, sensory loss, and pain. 
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5. The other three variants 

The other three variant thalamic territories are the anteromedial, central, and posterolateral regions. 

Infarctions in the anteromedial region, which is located in the posterior part of the anterior region and 

the anterior part of the paramedian region, often result in symptoms such as vertical gaze palsy, 

anterograde amnesia, aphasia, lack of motivation, and apathy. The central area represents the intersection 

of the four standard thalamic territories, and infarcts in this area are rare. When present, patients may 

experience cognitive loss, vertical gaze palsy, loss of arousal, and ataxia. The posterolateral thalamus is 

located in the anterior part of the posterior region and the posterior part of the inferior lateral region. 

Infarctions in this area manifest as aphasia, ataxia, and impairments in executive functions. 

 

Advanced neuroimaging findings on thalamic infarction syndrome 

After a thalamic infarction, the resulting behavioral symptoms can be diverse and can mimic many 

"cortical" disorders or brainstem syndromes [Emmanuel Carrera, 2006]. Additionally, behavioral 

disorders associated with anterior and paramedian damage to the thalamus can be difficult to distinguish 

from primary psychiatric conditions, particularly when there are limited indications of neurological 

dysfunction [Emmanuel Carrera, 2006; Schmahmann, 2003]. Advanced imaging techniques, such as 

high-resolution MRI, can provide more precise diagnoses of damaged thalamic nuclei and their related 

clinical features [Emmanuel Carrera, 2006; Rondina et al., 2016; Vogels et al., 2021; Xu et al., 2018]. 

Tractography with diffusion MRI [Behrens et al., 2003] and functional imaging methods, such as fMRI 

[Johansen-Berg et al., 2005; Puig et al., 2018] and PET [Dieterich et al., 2005; Dieterich & Brandt, 2008; 

Kopelman, 2015; Rudolphi-Solero et al., 2022; Stenset et al., 2007], can also shed light on the impact of 

the thalamic injury on the CNS and provide valuable insights into the altered connectivity underlying 

behavioral deficits after thalamic infarction [Emmanuel Carrera, 2006; Ward, 2023]. 

1. More precise thalamic lesion localization 

High-resolution MRI is one of the most commonly used neuroimaging techniques in the past few decades 

to evaluate nuclei after thalamic infarcts. This technique provides detailed information about the anatomy 

of the thalamus and surrounding structures, which can help to identify the location and extent of the 

infarct [Rondina et al., 2016; Xu et al., 2018]. 

High-resolution MRI is particularly useful for the evaluation of microinfarcts [Tao et al., 2022] and small 

vessel diseases [Jiang et al., 2021; Y. Yan et al., 2022], which can be difficult to detect with conventional 

CT or MRI. In addition, a combination of high-resolution MRI and the voxel-based lesion-symptom 

mapping (VLSM) technique [Bates et al., 2003; Chris Rorden, 2007] provides better insight into the 

association between the thalamic lesion and the symptom, allowing precision diagnosis and treatment. 

Sprenger et al., [2012] identified the ventral-posterior pulvinar nuclei (VPL) as the most high-risk 

subregion for infarcts leading to central pain of thalamic origin, with an odds ratio of 81, through lesion-

symptom mapping on high-resolution T1-weighted images. Furthermore, Krause and collogues precisely 

located the key subregions for the occurrence of pain as belonging to more posterior, inferior, and lateral 

parts of the VPL [Krause et al., 2012]. In a study including all poststroke pain types, they also found that 

VPL and the pulvinar subdivisions of the thalamus were significantly associated with clinical symptoms 

[Delboni Lemos et al., 2022]. In a cohort study evaluating multidimensional neuropsychological 

impairments in thalamic infarction patients, verbal memory deficits were correlated with anterior 

thalamic lesions [Scharf et al., 2022]. Recently, in a study focusing on thalamic infarction syndrome 

inducing thalamic aphasia, the lesioned left mediodorsal thalamic nucleus was identified as significantly 

associated with language impairments via VLSM [Stockert et al., 2022]. These results indicate that the 
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occurrence of specific thalamic infarctions, particularly central post-stroke pain（CPSP） of thalamic 

origin, is spatially specific, and lesions in different thalamic subregions are highly linked to the 

occurrence of specific symptoms, providing a theoretical basis for early and precise identification of such 

syndromes and improvement in individualized interventions. 

2. Structural alterations in adjacent and remote brain regions 

The thalamus is a relay station for information in the CNS [Salt, 2001], and accumulating neuroimaging 

evidence indicates alterations in a wide range of CNS regions after thalamic infarction, as shown in 

Figure 2. 

2.1 Adjacent structures 

Adjacent structures closely connected to the thalamus, such as the basal ganglia, hippocampus, and white 

matter between the thalamus and cortex, are affected by thalamic damage, and these impacts are 

correlated with certain clinical symptoms [Aggleton et al., 2010]. Damage to the thalamus leads to 

changes in the activity and morphology of the basal ganglia, which can result in various motor and 

sensory deficits [Kalia & Lang, 2015; Meyer et al., 2016]. fMRI data indicated abnormal dynamic 

functional states in the basal ganglia and their connections with the thalamus [Favaretto et al., 2022], 

which indicates a crucial impact of this region on recovery from neurological impairment and long-term 

outcomes. Li et al. found that thalamic infarction led to abnormalities in subfields of the hippocampus 

that were associated with impairments in memory. The underlying neural mechanisms may involve 

interactions between the thalamus and the hippocampus [Aggleton et al., 2010]. Moreover, 

thalamoinsular opercular white matter was found to significantly correlate with central pain syndrome in 

thalamic stroke patients [Delboni Lemos et al., 2022]. 

2.2 Distant areas 

In addition to areas adjacent to the thalamus, there is increasing interest in alterations of remote regions 

and their potential relationship with specific clinical syndromes in thalamic infarction [Koh et al., 2021; 

Weishaupt et al., 2015]. On the one hand, one mechanism underlying this impact in remote regions might 

be the concept of disconnection, or diaschisis, which has been proposed for decades and is used to explain 

a series of behavioral abnormalities after stroke [Carrera & Tononi, 2014; Corbetta et al., 2015; Griffis 

et al., 2019; Langen et al., 2018; Salvalaggio et al., 2020; Xia et al., 2021]. From this perspective, damage 

to the thalamus, the central hub of the brain, may result in a wide range of effects on connected (yet 

remote) brain regions. Several pieces of evidence support this proposed mechanism. First, a 

neuroimaging study combining voxel-based morphometry analysis and tract-based spatial statistics 

revealed changes in volume and white matter integrity in remote regions, including the brain stem, medial 

frontal gyrus, precentral gyrus, superior temporal gyrus, supplementary motor area, and postcentral gyrus 

[Yin et al., 2013], after thalamic infarction. Second, a longitudinal study found significant white matter 

volume loss in various brain regions in patients after thalamic infarction [Conrad, Habs, Ruehl, Bogle, 

et al., 2022]. Third, a study observed abnormal gray matter morphometry in the transverse temporal gyrus 

and superior temporal gyrus that significantly correlated with cognitive dysfunction [S. Yan et al., 2022]. 

Fourth, remote changes, characterized by secondary impairment of central thalamic radiation and 

atrophied ipsilesional primary somatosensory cortex, were found in thalamic infarction patients with 

sensory deficits [Chen et al., 2019]. Moreover, a recent study using advanced diffusion MRI techniques 

showed that structural connectivity (SC) to regions remote from the lesions (such as the superior 

longitudinal fasciculus and corpus callosum to the sensorimotor portion) was affected, correlating with 

somatosensory deficits [Koh et al., 2021]. 

On the other hand, accumulating evidence has suggested that neurological damage can lead to various 
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neuronal microenvironments, such as neural excitotoxicity, neurovascular structural changes, 

neurotransmitter abnormalities, and inflammatory responses, which can trigger increased neuronal 

excitability [Bee & Dickenson, 2008; Finnerup, 2008; Klit et al., 2009; Vestergaard et al., 1995]; in 

addition, abnormal changes such as hyperresponsiveness, hypoperfusion, and burst electrical activity 

have also been found in other sites secondary to thalamic vascular damage [Elias et al., 2020]. These 

mechanisms may lead to alterations in the distal septum, causing specific clinical features through central 

sensitization and reorganization of the distal cortex [Klit et al., 2009], ultimately leading to the 

occurrence of specific syndromes. 

Thus, these findings, obtained using advanced neuroimaging techniques, demonstrate that thalamic 

infarction results in changes to the structure of both nearby and distant regions of the brain. These results 

not only provide a theoretical basis for early and precise identification and individualized intervention 

for these diseases but also propose a new explanation for the neural pathogenesis of specific clinical 

syndromes after thalamic infarction. 

3. Disorder of brain network reorganization 

Neuroimaging research, with a graph theoretical approach, has demonstrated that the human brain is an 

integrated and complex network of structurally and functionally interconnected regions, which can be 

divided into nodes or modules with information communicated among components [Bullmore & Sporns, 

2009, 2012]. 

As discussed above, the damage to the thalamus and subsequent disconnection of the central hub of the 

brain [Guillery, 1995] suggest that clinical syndromes after thalamic infarction are brain network 

disorders. On the one hand, recent fMRI studies [Chen et al., 2019; He et al., 2021; Wang et al., 2021] 

have shown altered functional connectivity among certain brain regions in thalamic infarction patients 

with central somatosensory deficits, indicating secondary changes such as dysrhythmic or hyperexcitable 

patterns of neural activity, which have been suggested to cause various chronic pain symptoms [Baliki et 

al., 2014; Ducreux et al., 2006; Seghier et al., 2005]. On the other hand, alterations in SC revealed by 

diffusion imaging have also been observed in patients with thalamic or spinothalamic pathway lesions 

and are related to certain symptoms, such as somatosensory deficits and even central poststroke pain 

[Chen et al., 2019; Chuo Li, 2011; Jang et al., 2017, 2018; Kishi et al., 2009; Li et al., 2011]. More 

importantly, some reports have shown that structural changes may induce cortical alterations and 

reorganization of functional networks in thalamic infarction patients [Conrad, Habs, Ruehl, Boegle, et 

al., 2022; Stockert et al., 2022]. We propose that these observations denote a model of clinical syndromes 

after thalamic infarction, in which the brain undergoes a complex process of network reorganization 

rather than simple recovery from damage to a group of focal nuclei or vascular incidents, as shown in 

Figure 2. 

 

 

Potential targeted therapeutic options 

Hyperacute therapies (thrombolysis and endovascular therapy) have improved dramatically over the last 

few decades for ischemic stroke patients; however, a considerable number of patients do not receive 

reperfusion treatments or experience sequelae after these therapies [Wu et al., 2019], particularly in the 

thalamic infarction population. A comprehensive exploration of possibilities for neural repair via drugs 

or neuromodulatory therapy based on the neural mechanisms underlying stroke-induced brain damage is 

needed, with future clinical studies using advanced neuroimaging techniques [Bonkhoff et al., 2020, 

2021; Puig et al., 2018]. 
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Advanced neuroimaging techniques have the potential to greatly enhance our understanding of the neural 

mechanisms underlying clinical syndromes after thalamic infarction and guide the development of future 

therapeutic options. The following are ways in which advanced neuroimaging techniques can guide 

therapeutic options: 

1. Facilitate the early identification and accurate prediction of individuals at high risk of developing 

specific clinical syndromes after thalamic infarction, enabling early intervention to prevent the 

occurrence of symptoms. For example, in acute thalamic VPL infarct patients with somatosensory 

deficits, anti-neuropathic pain treatment such as pregabalin can be administered and might help to 

prevent the development of central poststroke pain. The next step is to conduct interventional 

studies in acute thalamic infarction patients before the onset of symptoms, based on advanced 

neuroimaging findings that suggest crucial lesions or other pathological changes in other regions in 

the pre-symptomatic stage. The disease course of most of these clinical syndromes, especially 

neuropathic pain syndromes and cognitive disorders, is highly heterogeneous, with most of them 

occurring weeks to months after the onset of infarction. Therefore, for most patients, there is a 

sufficient time window to initiate prophylactic treatment. 

2. Identify the specific neural mechanisms that are disrupted in clinical syndromes after thalamic 

stroke. This information can be used to develop and improve existing therapies, such as 

anticonvulsants and analgesic drugs for central poststroke pain. 

3. Monitor the effectiveness of neuromodulatory therapies with more accurate targets, such as 

repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Moreover, 

advanced neuroimaging techniques can be used to monitor the effectiveness of different therapies 

over time and measure brain changes after stimulation therapy. 

4. Guide the development of rehabilitation techniques. For example, DTI can be used to identify 

disruptions in white matter pathways, and fMRI can be used to identify brain regions that are 

activated during rehabilitation exercises. These imaging techniques can help to optimize 

rehabilitation techniques and ensure that they target the appropriate neural mechanisms. 

5. Facilitate the development of personalized treatment approaches. Advanced neuroimaging data can 

be used to identify individuals who are likely to respond best to a particular therapy and to develop 

customized rehabilitation programs for each patient. 

 

 

Conclusions and future directions 

In conclusion, thalamic infarction can result in profound impairments in motor, sensory, and even 

cognitive/neuropsychological functions. To date, the combination of conventional neuroimaging 

techniques (CT/MRI) and neurological examination may be unable to meet the precise diagnostic and 

individualized treatment needs of patients. The use of advanced neuroimaging techniques can enhance 

the understanding of the neural mechanisms underlying these complex clinical syndromes and can guide 

specific therapies to target these mechanisms, increasing the chances of favorable outcomes for patients 

with thalamic infarction. 

As the interruption of thalamocortical white matter connections is an important component of thalamic 

infarction syndromes, future research is needed to further understand the neural mechanisms of thalamic 

infarction using advanced neuroimaging techniques and larger sample sizes with longitudinal designs. In 

addition, most previous studies have employed unimodal or single-dimensional imaging techniques, and 

the imaging sequences used in some studies have substantial limitations, such as low spatial resolution 
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or the inability to identify the intersection of multiple fibers within a single voxel in DTI models [Kaden 

et al., 2007]. These limitations may reduce the accuracy of the results and restrict the clinical applications 

of the findings. Last but not least, these advanced techniques are ineffective without consideration of 

patients’ explicit needs and benefits. Future research should focus on subtle improvements in patients’ 

behavioral deficits with close attention from clinicians and combine this information with neuroimaging 

data to develop a more effective strategy for mitigating the impact of post-thalamic infarction 

impairments. 
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Figure 1. Schematic of the arterial supply of the thalamus and four diffusion-weighted MRI scans of 

standard infarction types. A, B. Illustration of the major supplying arteries of the thalamus and divisions 

of thalamic nuclei[Bordes et al., 2020; Emmanuel Carrera, 2006]. C. Diffusion-weighted images from 

four patients with standard infarction types: a. anterior territory infarction, supplied by the thalamic 

tuberosity artery; b. paramedian territory infarction, supplied by the paramedian artery; c. inferolateral 

territory infarction, supplied by the thalamic geniculate artery; and d. posterior territory infarction, 

supplied by the posterior choroidal artery. PComm: posterior communicating artery; P1: first segment of 

the posterior cerebral artery; P2: second segment of the posterior cerebral artery; CL: central lateral; CM: 

centromedial; Co: commissural; Cp: commissural posterior; DM: dorsomedial; MTT: mamillothalamic 

tract; Pua: pulvinar anterior; Pum: pulvinar medial; Pul: pulvinar lateral; Pf: parafascicularis; R: reticular; 

VA: ventral anterior; VLa: ventral lateral anterior; VLp: ventral lateral posterior; VPLa: 

ventroposterolateral anterior; VPLp: ventroposterolateral posterior; VPM: ventroposteromedial. 
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Figure 1. Illustration of affected brain regions after a thalamic infarction. 
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